PostgreSQL 8.2.6 Documentation | ||||
---|---|---|---|---|
Prev | Fast Backward | Chapter 48. Genetic Query Optimizer | Fast Forward | Next |
The genetic algorithm ( GA ) is a heuristic optimization method which operates through nondeterministic, randomized search. The set of possible solutions for the optimization problem is considered as a population of individuals . The degree of adaptation of an individual to its environment is specified by its fitness .
The coordinates of an individual in the search space are represented by chromosomes , in essence a set of character strings. A gene is a subsection of a chromosome which encodes the value of a single parameter being optimized. Typical encodings for a gene could be binary or integer .
Through simulation of the evolutionary operations recombination , mutation , and selection new generations of search points are found that show a higher average fitness than their ancestors.
According to the comp.ai.genetic FAQ it cannot be stressed too strongly that a GA is not a pure random search for a solution to a problem. A GA uses stochastic processes, but the result is distinctly non-random (better than random).
Figure 48-1. Structured Diagram of a Genetic Algorithm
+=========================================+ |>>>>>>>>>>> Algorithm GA <<<<<<<<<<<<<<| +=========================================+ | INITIALIZE t := 0 | +=========================================+ | INITIALIZE P(t) | +=========================================+ | evaluate FITNESS of P(t) | +=========================================+ | while not STOPPING CRITERION do | | +-------------------------------------+ | | P'(t) := RECOMBINATION{P(t)} | | +-------------------------------------+ | | P''(t) := MUTATION{P'(t)} | | +-------------------------------------+ | | P(t+1) := SELECTION{P''(t) + P(t)} | | +-------------------------------------+ | | evaluate FITNESS of P''(t) | | +-------------------------------------+ | | t := t + 1 | +===+=====================================+
Prev | Home | Next |
Query Handling as a Complex Optimization Problem | Up | Genetic Query Optimization ( GEQO ) in PostgreSQL |