![]() |
Сервер Информационных Технологий содержит море(!) аналитической информации |
Сервер поддерживается |
---|
Чтобы понять технику межсетевого взаимодействия, нужно понять то, как используется таблица маршрутов. Это понимание необходимо для успешного администрирования и сопровождения IP-сетей.
адрес | отправитель | получатель |
---|---|---|
IP-заголовок Ethernet-заголовок | | |
В данном случае при взаимодействии A с B используется прямая маршрутизация.
Менеджер сети присваивает каждой сети Ethernet уникальный номер, называемый IP-номером сети. На рис.7 IP-номера не показаны, вместо них используются имена сетей.
Когда машина A посылает IP-пакет машине B, то процесс передачи идет в пределах одной сети. При всех взаимодействиях между машинами, подключенными к одной IP-сети, используется прямая маршрутизация, обсуждавшаяся в предыдущем примере.
Когда машина D взаимодействует с машиной A, то это прямое взаимодействие. Когда машина D взаимодействует с машиной E, то это прямое взаимодействие. Когда машина D взаимодействует с машиной H, то это прямое взаимодействие. Это так, поскольку каждая пара этих машин принадлежит одной IP-сети.
Однако, когда машина A взаимодействует с машинами, включенными в другую IP-сеть, то взаимодействие уже не будет прямым. Машина A должна использовать шлюз D для ретрансляции IP-пакетов в другую IP-сеть. Такое взаимодействие называется "косвенным".
Маршрутизация IP-пакетов выполняется модулями IP и является прозрачной для модулей TCP, UDP и прикладных процессов.
Если машина A посылает машине E IP-пакет, то IP-адрес и Ethernet-адрес отправителя соответствуют адресам A. IP-адрес места назначения является адресом E, но поскольку модуль IP в A посылает IP-пакет через D, Ethernet-адрес места назначения является адресом D.
адрес | отправитель | получатель |
---|---|---|
IP-заголовок Ethernet-заголовок | | |
адрес | отправитель | получатель |
---|---|---|
IP-заголовок Ethernet-заголовок | |
В данном примере сеть internet является очень простой. Реальные сети могут быть гораздо сложнее, так как могут содержать несколько шлюзов и несколько типов физических сред передачи. В приведенном примере несколько сетей Ethernet объединяются шлюзом для того, чтобы локализовать широковещательный трафик в каждой сети.
Для отправляемых IP-пакетов, поступающих от модулей верхнего уровня, модуль IP должен определить способ доставки - прямой или косвенный - и выбрать сетевой интерфейс. Этот выбор делается на основании результатов поиска в таблице маршрутов.
Для принимаемых IP-пакетов, поступающих от сетевых драйверов, модуль IP должен решить, нужно ли ретранслировать IP-пакет по другой сети или передать его на верхний уровень. Если модуль IP решит, что IP-пакет должен быть ретранслирован, то дальнейшая работа с ним осуществляется также, как с отправляемыми IP-пакетами.
Входящий IP-пакет никогда не ретранслируется через тот же сетевой интерфейс, через который он был принят.
Решение о маршрутизации принимается до того, как IP-пакет передается сетевому драйверу, и до того, как происходит обращение к ARP-таблице.
Существуют 5 классов IP-адресов, отличающиеся количеством бит в сетевом номере и хост-номере. Класс адреса определяется значением его первого октета.
В табл.8 приведено соответствие классов адресов значениям первого октета и указано количество возможных IP-адресов каждого класса.
Класс | Диапазон значений первого октета | Возможное кол-во сетей | Возможное кол-во узлов |
---|---|---|---|
|
Некоторые IP-адреса являются выделенными и трактуются по-особому.
Одно из важнейших решений, которое необходимо принять при установке сети, заключается в выборе способа присвоения IP-адресов вашим машинам. Этот выбор должен учитывать перспективу роста сети. Иначе в дальнейшем вам придется менять адреса. Когда к сети подключено несколько сотен машин, изменение адресов становится почти невозможным.
Организации, имеющие небольшие сети с числом узлов до 126, должны запрашивать сетевые номера класса C. Организации с большим числом машин могут получить несколько номеров класса C или номер класса B. Удобным средством структуризации сетей в рамках одной организации являются подсети.
Конечно, использование подсетей необязательно. Можно просто назначить для каждой физической сети свой сетевой номер, например, номер класса C. Однако такое решение имеет два недостатка. Первый, и менее существенный, заключается в пустой трате сетевых номеров. Более серьезный недостаток состоит в том, что если ваша организация имеет несколько сетевых номеров, то машины вне ее должны поддерживать записи о маршрутах доступа к каждой из этих IP-сетей. Таким образом, структура IP-сети организации становится видимой для всего мира. При каких-либо изменениях в IP-сети информация о них должна быть учтена в каждой из машин, поддерживающих маршруты доступа к данной IP-сети.
Подсети позволяют избежать этих недостатков. Ваша организация должна получить один сетевой номер, например, номер класса B. Стандарты TCP/IP определяют структуру IP-адресов. Для IP-адресов класса B первые два октета являются номером сети. Оставшаяся часть IP-адреса может использоваться как угодно. Например, вы можете решить, что третий октет будет определять номер подсети, а четвертый октет - номер узла в ней. Вы должны описать конфигурацию подсетей в файлах, определяющих маршрутизацию IP-пакетов. Это описание является локальным для вашей организации и не видно вне ее. Все машины вне вашей организации видят одну большую IPсеть. Следовательно, они должны поддерживать только маршруты доступа к шлюзам, соединяющим вашу IP-сеть с остальным миром. Изменения, происходящие в IP-сети организации, не видны вне ее. Вы легко можете добавить новую подсеть, новый шлюз и т.п.
Вы также должны выбрать "маску подсети". Она используется сетевым программным обеспечением для выделения номера подсети из IP-адресов. Биты IP-адреса, определяющие номер IP-сети, в маске подсети должны быть равны 1, а биты, определяющие номер узла, в маске подсети должны быть равны 0. Как уже отмечалось, стандарты TCP/IP определяют количество октетов, задающих номер сети. Часто в IP-адресах класса B третий октет используется для задания номера подсети. Это позволяет иметь 256 подсетей, в каждой из которых может быть до 254 узлов. Маска подсети в такой системе равна 255.255.255.0. Но, если в вашей сети должно быть больше подсетей, а в каждой подсети не будет при этом более 60 узлов, то можно использовать маску 255.255.255.192. Это позволяет иметь 1024 подсети и до 62 узлов в каждой. (Напомним, что номера узлов 0 и "все единицы" используются особым образом.)
Обычно маска подсети указывается в файле стартовой конфигурации сетевого программного обеспечения. Протоколы TCP/IP позволяют также запрашивать эту информацию по сети.
223.1.2.1 alpha
223.1.2.2 beta
223.1.2.3 gamma
223.1.2.4 delta
223.1.3.2 epsilon
223.1.4.2 iota
В первом столбце - IP-адрес, во втором - название машины.
В большинстве случаев файлы "hosts" могут быть одинаковы на всех узлах. Заметим, что о узле delta в этом файле есть всего одна запись, хотя он имеет три IP-адреса (рис.11). Узел delta доступен по любому из этих IP-адресов. Какой из них используется, не имеет значения. Когда узел delta получает IP-пакет и проверяет IP-адрес места назначения, то он опознает любой из трех своих IP-адресов.
IP-сети также могут иметь имена. Если у вас есть три IP-сети, то файл "networks" может выглядеть примерно так:
223.1.2 development
223.1.3 accounting
223.1.4 factory
В первой колонке - сетевой номер, во второй - имя сети.
В данном примере alpha является узлом номер 1 в сети development, beta является узлом номер 2 в сети development и т.д.
Показанный выше файл hosts удовлетворяет потребности пользователей, но для управления сетью internet удобнее иметь названия всех сетевых интерфейсов. Менеджер сети, возможно, заменит строку, относящуюся к delta:
223.1.2.4 devnetrouter delta
223.1.3.1 accnetrouter
223.1.4.1 facnetrouter
Эти три строки файла hosts задают каждому IP-адресу узла delta
символьные имена. Фактически, первый IP-адрес имеет два имени:
"devnetrouter" и "delta", которые являются синонимами. На практике имя
"delta" используется как общеупотребительное имя машины, а остальные три
имени - для администрирования сети.
Файлы hosts и networks используются командами администрирования и прикладными программами. Они не нужны собственно для работы сети internet, но облегчают ее использование.
Таблица маршрутов содержит по одной строке для каждого маршрута. Основными столбцами таблицы маршрутов являются номер сети, флаг прямой или косвенной маршрутизации, IP-адрес шлюза и номер сетевого интерфейса. Эта таблица используется модулем IP при обработке каждого отправляемого IP-пакета.
В большинстве систем таблица маршрутов может быть изменена с помощью команды "route". Содержание таблицы маршрутов определяется менеджером сети, поскольку менеджер сети присваивает машинам IP-адреса.
| маршрутизации | интерфейса | |
development | <пусто> | |
Для сравнения ниже представлена та же таблица, но вместо названия сети указан ее номер.
| маршрутизации | интерфейса | |
223.1.2 | <пусто> | |
Остальная информация в найденной строке указывает на то, что машины этой сети доступны напрямую через интерфейс номер 1. С помощью ARP-таблицы выполняется преобразование IP-адреса в соответствующий Ethernet-адрес, и через интерфейс 1 Ethernet-кадр посылается узлу beta.
Если прикладная программа пытается послать данные по IP-адресу, который не принадлежит сети development, то модуль IP не сможет найти соответствующую запись в таблице маршрутов. В этом случае модуль IP отбрасывает IP-пакет. Некоторые реализации протокола возвращают сообщение об ошибке "Сеть не доступна".
Таблица маршрутов в узле alpha выглядит так:
сеть | флаг вида маршрутизации | шлюз | номер интерфейса |
---|---|---|---|
| <пусто> | | |
| | devnetrouter | |
| | | |
сеть | флаг вида маршрутизации | шлюз | номер интерфейса |
---|---|---|---|
| <пусто> | | |
| | 223.1.2.4 | |
| | | |
Запись в этой строке указывает на то, что машины требуемой сети доступны через шлюз devnetrouter. Модуль IP в узле alpha осуществляет поиск в ARP-таблице, с помощью которого определяет Ethernet-адрес, соответствующий IP-адресу devnetrouter. Затем IP-пакет, содержащий IP-адрес места назначения epsilon, посылается через интерфейс 1 шлюзу devnetrouter.
IP-пакет принимается сетевым интерфейсом в узле delta и передается модулю IP. Проверяется IP-адрес места назначения, и, поскольку он не соответствует ни одному из собственных IP-адресов delta, шлюз решает ретранслировать IP-пакет.
Модуль IP в узле delta выделяет сетевой номер из IP-адреса места назначения IP-пакета (223.1.3) и ищет соответствующую запись в таблице маршрутов. Таблица маршрутов в узле delta выглядит так:
сеть | флаг вида маршрутизации | шлюз | номер интерфейса |
---|---|---|---|
| <пусто> | | |
| | <пусто> | |
| | | |
сеть | флаг вида маршрутизации | шлюз | номер интерфейса |
---|---|---|---|
| <пусто> | | |
| | <пусто> | |
| | | |
Узел epsilon принимает IP-пакет, и его модуль IP проверяет IP-адрес
места назначения. Он соответствует IP-адресу epsilon, поэтому содержащееся
в IP-пакете сообщение передается протокольному модулю верхнего
уровня.