

Corporate Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http: / /www.cisco.com
Tel: 408 526-4000
 800 553-NETS (6387)
Fax: 408 526-4100

Customer Order Number: DOC-138634=
Text Part Number: OL-7204-01

SCMS SM Java API
Programmer's Guide

OL-7204-01

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS,
INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED
WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED
WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The following information is for FCC compliance of Class A devices: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15
of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment
generates, uses, and can radiate radio-frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications.
Operation of this equipment in a residential area is likely to cause harmful interference, in which case users will be required to correct the interference at their own expense.

The following information is for FCC compliance of Class B devices: The equipment described in this manual generates and may radiate radio-frequency energy. If it is not installed in
accordance with Cisco’s installation instructions, it may cause interference with radio and television reception. T his equipment has been tested and found to comply with the limits for a
Class B digital device in accordance with the specifications in part 15 of the FCC rules. These specifications are designed to provide reasonable protection against such interference in a
residential installation. However, there is no guarantee that interference will not occur in a particular installation.

Modifying the equipment without Cisco’s written authorization may result in the equipment no longer complying with FCC requirements for Class A or Class B digital devices. In that
event, your right to use the equipment may be limited by FCC regulations, and you may be required to correct any interference to radio or television communications at your own
expense.

You can determine whether your equipment is causing interference by turning it off. If the interference stops, it was probably caused by the Cisco equipment or one of its peripheral
devices. If the equipment causes interference to radio or television reception, try to correct the interference by using one or more of the following measures:

• Turn the television or radio antenna until the interference stops.

• Move the equipment to one side or the other of the television or radio.

• Move the equipment farther away from the television or radio.

• Plug the equipment into an outlet that is on a different circuit from the television or radio. (That is, make certain the equipment and the television or radio are on circuits controlled
by different circuit breakers or fuses.)

Modifications to this product not authorized by Cisco Systems, Inc. could void the FCC approval and negate your authority to operate the product.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB’s public domain version
of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH ALL
FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED ORIMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE
PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT
LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILTY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

CCSP, the Cisco Square Bridge logo, Follow Me Browsing, and StackWise are trademarks of Cisco Systems, Inc.; Changing the Way We Work, Live, Play, and Learn, and iQuick Study
are service marks of Cisco Systems, Inc.; and Access Registrar, Aironet, ASIST, BPX, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, Cisco, the Cisco Certified Internetwork
Expert logo, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Unity, Empowering the Internet Generation, Enterprise/Solver, EtherChannel,
EtherFast, EtherSwitch, Fast Step, FormShare, GigaDrive, GigaStack, HomeLink, Internet Quotient, IOS, IP/TV, iQ Expertise, the iQ logo, iQ Net Readiness Scorecard, LightStream,
Linksys, MeetingPlace, MGX, the Networkers logo, Networking Academy, Network Registrar, Packet, PIX, Post-Routing, Pre-Routing, ProConnect, RateMUX, ScriptShare, SlideCast,
SMARTnet, StrataView Plus, SwitchProbe, TeleRouter, The Fastest Way to Increase Your Internet Quotient, TransPath, and VCO are registered trademarks of Cisco Systems, Inc. and/or
its affiliates in the United States and certain other countries.

All other trademarks mentioned in this document or Website are the property of their respective owners. The use of the word partner does not imply a partnership relationship between
Cisco and any other company. (0501R)

Printed in the USA on recycled paper containing 10% postconsumer waste.

SCMS SM Java API Programmer's Guide

Copyright © 2002-2005 Cisco Systems, Inc.
All rights reserved.

SCMS SM Java API Programmer's Guide

OL-7204-01 i

Preface v
Audience v
Purpose v
Related Publications v
Document Conventions vi
Technical Support vi

Cisco TAC Website vi
Opening a TAC Case vii
TAC Case Priority Definitions vii

 Getting Started 1-1
Introduction 1-1
Platforms 1-1
Installation 1-2

Extracting the Package 1-2
Compiling and running 1-3
SM setup 1-3

 General API Concepts 2-1
Blocking API/Non-blocking API 2-1

Blocking API 2-1
Non-blocking API 2-2

API Initialization 2-2
API Construction 2-2
Setup Operations 2-3
Connecting to the SM 2-3

API Finalization 2-4
Subscriber Name Format 2-4
Network ID Mappings 2-4

C O N T E N T S

 Contents

 SCMS SM Java API Programmer's Guide

ii OL-138634

Specifying IP Address Mapping 2-5
Specifying IP Range Mapping 2-5
Specifying VLAN Tag Mapping 2-5

Subscriber Domains 2-6
Subscriber Properties 2-6
Custom Properties 2-6
DisconnectListener Interface 2-7
Exceptions 2-7

 Blocking API 3-1
Multi-threading Support 3-1
ReplyTimeout and OperationTimeout Exception 3-2
Blocking API Methods 3-3

login 3-4
logoutByName 3-7
logoutByNameFromDomain 3-8
logoutByMapping 3-9
loginCable 3-10
logoutCable 3-12
addSubscriber 3-13
removeSubscriber 3-15
removeAllSubscribers 3-16
getNumberOfSubscribers 3-16
getNumberOfSubscribersInDomain 3-16
getSubscriber 3-17
subscriberExists 3-18
subscriberLoggedIn 3-19
getSubscriberNameByMapping 3-19
getSubscriberNames 3-20
getSubscriberNamesInDomain 3-22
getSubscriberNamesWithPrefix 3-22
getSubscriberNamesWithSuffix 3-23
getDomains 3-24
setPropertiesToDefault 3-25

Contents

SCMS SM Java API Programmer's Guide

OL-138634 iii

removeCustomProperties 3-25
Blocking API Code Examples 3-26

Getting Number of Subscribers 3-26
Adding Subscriber, Printing Information, Removing Subscriber 3-27

 Non-blocking API 4-1
Reliability Support 4-1

Reliable Mode 4-2
Non-reliable Mode 4-2

Auto-reconnect Support 4-2
Multi-threading Support 4-2
ResultHandler Interface 4-3
Non-blocking API Construction 4-4
Non-blocking API Initialization 4-5
Non-blocking API Methods 4-6

login 4-7
logoutByName 4-7
logoutByNameFromDomain 4-8
logoutByMapping 4-8
loginCable 4-8
logoutCable 4-8

Non-blocking API Code Examples 4-8
Login and Logout 4-9

 List of Error Codes A-1

 Index 1

SCMS SM Java API Programmer's Guide

OL-138634 v

The SCMS SM Java API is used for updating, querying, and configuring the SM. It consists of
two parts, which may be used separately or together without limitation.

• SM Non-blocking Java API: A high-performance API with low visibility to errors and other
operation results. Supports automatic integrations with OSS/AAA systems.

• SM Blocking Java API: A more user-friendly API. Supports user interface applications for
accessing and managing the SM.

Note A set of APIs with exactly the same functionality is available in C and C++ as well.

Audience
This guide is for the networking or computer technician responsible for configuring the SM. It is
also intended for the operator who manages the SCE Platform(s).

Purpose
This document explains the SCMS SM Java API, and explains how to install, compile, and run it.

Related Publications
This API Guide should be used in conjunction with the SCMS Subscriber Manager suite of User,
API and Reference Guides.

Preface

Preface

 Document Conventions

 SCMS SM Java API Programmer's Guide

vi OL-138634

Document Conventions
The following typographic conventions are used in this guide:
Typeface or Symbol Meaning

Italics References, new terms, field names, and placeholders.

Bold Names of menus, options, and command buttons.

Courier System output shown on the computer screen in the Telnet session.

Courier Bold CLI code typed in by the user in examples.

Courier Italic Required parameters for code.

[italic in
brackets]

Optional parameters for code.

Note.

Notes contain important information.

Warning.

Warning means danger of bodily injury or of damage to equipment.

Technical Support
Cisco TAC Website

The Cisco TAC website (http://www.cisco.com/tac (http://www.cisco.com/tac)) provides online
documents and tools for troubleshooting and resolving technical issues with Cisco products and
technologies. The Cisco TAC website is available 24 hours a day, 365 days a year.

Accessing all the tools on the Cisco TAC website requires a Cisco.com user ID and password. If
you have a valid service contract but do not have a login ID or password, register at this URL:
http://tools.cisco.com/RPF/register/register.do (http://tools.cisco.com/RPF/register/register.do)

http://www.cisco.com/tac
http://tools.cisco.com/RPF/register/register.do

Preface

Technical Support

SCMS SM Java API Programmer's Guide

OL-138634 vii

Opening a TAC Case
The online TAC Case Open Tool (http://www. cisco.com/tac/caseopen
(http://www.cisco.com/tac/caseopen)) is the fastest way to open P3 and P4 cases. (Your network is
minimally impaired or you require product information). After you describe your situation, the
TAC Case Open Tool automatically recommends resources for an immediate solution.

If your issue is not resolved using these recommendations, your case will be assigned to a Cisco
TAC engineer. For P1 or P2 cases (your production network is down or severely degraded) or if
you do not have Internet access, contact Cisco TAC by telephone. Cisco TAC engineers are
assigned immediately to P1 and P2 cases to help keep your business operations running smoothly.

To open a case by telephone, use one of the following numbers:

Asia-Pacific: +61 2 8446 7411 (Australia: 1 800 805 227)

EMEA: +32 2 704 55 55

USA: 1 800 553-2447

For a complete listing of Cisco TAC contacts, go to this URL:
http://www.cisco.com/warp/public/687/Directory/DirTAC.shtml
(http://www.cisco.com/warp/public/687/Directory/DirTAC.shtml)

TAC Case Priority Definitions
To ensure that all cases are reported in a standard format, Cisco has established case priority
definitions.

Priority 1 (P1)—Your network is “down” or there is a critical impact to your business operations.
You and Cisco will commit all necessary resources around the clock to resolve the situation.

Priority 2 (P2)—Operation of an existing network is severely degraded, or significant aspects of
your business operation are negatively affected by inadequate performance of Cisco products. You
and Cisco will commit full-time resources during normal business hours to resolve the situation.

Priority 3 (P3)—Operational performance of your network is impaired, but most business
operations remain functional. You and Cisco will commit resources during normal business hours
to restore service to satisfactory levels.

Priority 4 (P4)—You require information or assistance with Cisco product capabilities,
installation, or configuration. There is little or no effect on your business operations.

http://www.cisco.com/tac/caseopen
http://www.cisco.com/warp/public/687/Directory/DirTAC.shtml

SCMS SM Java API Programmer's Guide

OL-138634 1-1

This section discusses the platforms on which the Java API can it be used, and how to install,
compile, and start running it.

This chapter contains the following sections:

• Introduction 1-1

• Platforms 1-1

• Installation 1-2

• Compiling and running 1-3

• SM setup 1-3

Introduction
The Java API is used for updating, querying, and configuring the SCMS Subsriber Manager. It
consists of two parts, which may be used separately or together without restriction.

• SM Non-blocking Java API: A high-performance API with low visibility to errors and other
operation results. Supports automatic integrations with OSS/AAA systems.

• SM Blocking Java API: A more user-friendly API. Supports user interface applications for
accessing and managing the SM.

Platforms
The SM Java API was developed and tested on a Windows platform, but it is operable on any
platform that supports Java version 1.3 or later.

C H A P T E R 1

Getting Started

Chapter 1 Getting Started

 Installation

 SCMS SM Java API Programmer's Guide

1-2 OL-138634

Installation
Extracting the Package

The Java SM API is packaged in a UNIX tar file that can be extracted using the UNIX tar utility
or most Windows compression utilities.

To install the distribution on a UNIX platform, use the following command line:
#> tar xvf sm-java-api-vvv.bb.tar

To install the distribution on a Windows platform, use a zip extractor (such as WinZip). The
abbreviations vvv and bb stand for the Java SM API version and build number.

Package Content
For brevity, the installation directory sm-java-api-vvv.bb is referred to as <installdir>.

The <installdir>/javadoc folder contains the API JAVADOC documentation.

The <installdir>/lib folder contains the smapi.jar file, which is the API Executable. It
also contains additional jar files necessary for the API operation.

Table 1-1 Layout of Installation Directory

Path Name Description

<installdir>

 README API readme file

<installdir>/Javadoc

 Index.html Index of all API specifications

 (API specification files, etc.) API specification documents

<installdir>/Lib

 smapi.jar SM API executable

 Asn1rt.jar Utility jar used by the API

 jdmkrt.jar Utility jar used by the API

 Log4j.jar Utility jar used by the API

 Log4j.properties

 xerces.jar Utility jar used by the API

Chapter 1 Getting Started

Compiling and running

SCMS SM Java API Programmer's Guide

OL-138634 1-3

Compiling and running
To compile and run a program that uses the SM Java API, smapi.jar must be in CLASSPATH.

For example, if the program source is in SMApiProgram.java, use the following command line
to compile:

#> javac -classpath smapi.jar SMApiProgram.java

Afterward, use the following command line to run the program:

#> java -cp .;<installdir>/lib/smapi.jar SMApiProgram

SM setup
The API connects to the PRPC server on the SM. In order for the API to work:

• The SM must be up and running, and reachable from the machine that hosts the API.

• The PRPC server must be started.

The PRPC server is a proprietary RPC protocol designed by Cisco. For more information, see the
SCMS Subscriber Manager User Guide.

SCMS SM Java API Programmer's Guide

OL-138634 2-1

This section describes various concepts that are utilized when working with the SM Java API.

This chapter contains the following sections:

• Blocking API/Non-blocking API 2-1

• API Initialization 2-2

• API Finalization 2-4

• Subscriber Name Format 2-4

• Network ID Mappings 2-4

• Subscriber Domains 2-6

• Subscriber Properties 2-6

• Custom Properties 2-6

• DisconnectListener Interface 2-7

• Exceptions 2-7

Blocking API/Non-blocking API
Describes the differences between Blocking APIs and Non-blocking APIs.

Blocking API
In a Blocking API, which is the common type, every method returns after its operation has been
performed.

The SM Blocking Java API provides a wide range of operations. It contains most of the
functionality of the Non-blocking API (reliability and auto-reconnect are not supported), as well
as many functions that are not provided by the Non-blocking API.

C H A P T E R 2

General API Concepts

Chapter 2 General API Concepts

 API Initialization

 SCMS SM Java API Programmer's Guide

2-2 OL-138634

Non-blocking API
Non-blocking methods return immediately, even before their operation has been completed. The
operation results are either returned to an Observer object (Listener) or not returned at all.

The Non-blocking method is advantageous when the operation is lengthy and involves I/O.
Performing the operation in a separate thread allows the caller to continue doing other tasks and
improves overall system performance.

The SM Non-blocking Java API contains a small number of non-blocking operations. The API
supports retrieval of operation results using a result listener.

The SM Non-blocking Java API supports two modes: reliable and non-reliable. For more
information about the reliability modes, see Reliability Support (on page 4-1).

API Initialization
To initialize the API:

Step 1 Construct the API using one of its constructors.

Step 2 Perform the API-specific setup operations.

Step 3 Connect the API to the SM.

The three steps above are described in the following sections.

Initialization examples can be found within the code examples sections under each API.

API Construction
Blocking and Non-blocking APIs have two common constructors:

• An empty constructor

• A constructor that accepts a LEG name as a parameter

Constructor that accepts a LEG name
Set the LEG name if you intend to turn on the SM-LEG failure handling options in the SM. You
should read about LEGs and SM-LEG failure handling in the SCMS Subscriber Manager User
Guide.

The LEG name will be used by the SM when recovering from a connection failure. A constant
string that identifies the API will be appended to the LEG name as follows:

• For Blocking API: .B.SM-API.J

• For Non-blocking API: .NB.SM-API.J

Chapter 2 General API Concepts

API Initialization

SCMS SM Java API Programmer's Guide

OL-138634 2-3

Example (Blocking API):

• If the provided LEG Name is my-leg.10.1.12.45-version-1.0, the actual LEG Name
will be my-leg.10.1.12.45-version-1.0.B.SM-API.J.

If no name is set, the LEG uses the hostname of the machine as the prefix of the name.

For additional information about LEG-SM failure handling, see the SCMS Subscriber Manager
User Guide, Appendix A (Configuration File Options).

Additional constructors are available for the Non-blocking API. For more information, see Non-
blocking API Construction (on page 4-4).

Setup Operations
The setup operations differ for the two APIs. Both APIs support setting a disconnect listener,
described in more detail in the DisconnectListener Interface (on page 2-7) section.

Blocking API setup
To set up the Blocking API, you need to set an operation timeout value. For more information, see
the Blocking API (on page 3-1).

Non-blocking API setup
To set up the Non-blocking API you are required to set a disconnect listener. For more details, see
the Non-blocking API (on page 4-1) chapter.

Connecting to the SM
To connect to the SM, use one of the following connect methods.

• The following method uses the default RPC TCP port (14374) to connect to the SM.
connect(String host)

• The following method allows the caller to set the TCP port to which the API connects.
connect(String host, int port)

For both methods, the host parameter can be either an IP address or a reachable hostname.

At any time during the API operation, you can check if the API is connected by using the method
isConnected.

Chapter 2 General API Concepts

 API Finalization

 SCMS SM Java API Programmer's Guide

2-4 OL-138634

API Finalization
To free the resources of both server and client, call the disconnect method.

It is recommended that you use a finally statement in your main class; for example:
public static void main(String [] args) throws Exception {
 SMNonBlockingApi smnbapi = new SMNonBlockingApi();
 try {
 …
 } finally {
 smnbapi.disconnect();
 }
}

Subscriber Name Format
Most methods of both APIs require the subscriber name as an input parameter. This section lists
the formatting rules of a subscriber name.

The subscriber name is case-sensitive. It may contain up to 40 characters. The following
characters may be used:
Alphanumerics $ (dollar sign) . (period or dot) _ (underscore)

- (minus sign or hyphen) % (percent sign) / (slash) ~ (tilde)

! (exclamation mark) & (ampersand) : (colon) ' (apostrophe)

(number sign) () (parentheses) @ (at sign)

Network ID Mappings
A network ID mapping is a network identifier that the SCE device can relate to a specific
subscriber record. A typical example of a network ID mapping (or simply mapping) is an IP
address. For additional information, see the SCMS Subscriber Manager User Guide. Currently,
the Cisco Service Control system supports IP address, IP range, and VLAN mappings.

Both Blocking and Non-blocking APIs contain operations that accept mappings as a parameter.
Examples are:

• the addSubscriber operation (Blocking API)

• the login method (Blocking or Non-blocking API)

When passing mappings to an API method, the caller is requested to provide two parameters:

• a java.lang.String mapping identifier or array of mapping types

• a short mapping type or array of mapping types

When passing arrays, the mappingTypes array must contain either the same number of elements
as the mappings array, or a single element. If the mappingTypes array contains a single
element, all mappings have the same type, specified by this single element.

The API supports the following subscriber mapping types:

• IP addresses or IP ranges

Chapter 2 General API Concepts

Network ID Mappings

SCMS SM Java API Programmer's Guide

OL-138634 2-5

• VLAN tags

Specifying IP Address Mapping
The string format of an IP address is the commonly used decimal notation:
IP-Address=[0-255].[0-255].[0-255].[0-255].

Example:
• 216.109.118.66

• The mapping type of an IP address is provided in the interface
com.pcube.management.api.SMApiConstants:

• com.pcube.management.api.SMApiConstants.MAPPING_TYPE_IP specifies a single
IP mapping that matches the mapping identifier with the same index in the mapping identifier
array.

• com.pcube.management.api.SMApiConstants.ALL_IP_MAPPINGS specifies that all
the entries in the mapping identifiers array are IP mappings.

Specifying IP Range Mapping
The string format of an IP range is an IP address in decimal notation and a decimal specifying the
number of 1s in a bit mask: IP-Range=[0-255].[0-255].[0-255].[0-255]/[0-32].

Examples:

• 10.1.1.10/32 is an IP range with a full mask, that is, a regular IP address.

• 10.1.1.0/24 is an IP range with a 24-bit mask, that is, all the addresses ranging between
10.1.1.0 and 10.1.1.255.

Note The mapping type of an IP Range is identical to the mapping type of the IP address.

Specifying VLAN Tag Mapping
The string format for VLAN tag mapping is: VLAN-tag = 0-4095.

The string is simply a decimal in the specified range.

The mapping type is also provided in interface
com.pcube.management.api.SMApiConstants:

• com.pcube.management.api.SMApiConstants.MAPPING_TYPE_VLAN specifies a
single VLAN mapping that matches the mapping identifier with the same index in the
mapping identifier array.

• com.pcube.management.api.SMApiConstants.ALL_VLAN_MAPPINGS specifies that all
the entries in the mapping identifiers array are VLAN mappings.

Chapter 2 General API Concepts

 Subscriber Domains

 SCMS SM Java API Programmer's Guide

2-6 OL-138634

Subscriber Domains
The domain concept is explained in detail in the SCMS Subscriber Manager User Guide.
Roughly, a domain is an identifier that tells the SM which SCE devices should be updated with
the subscriber record.

A domain name is of type String. During system installation, the network administration
determines the system domain names, which therefore vary between installations. The APIs
include methods that specify to which domain a subscriber belongs and allow queries about the
system's domain names. If an API operation specifies a domain name that does not exist in the SM
domain repository, it is considered an error and an RpcErrorException will be returned.

Subscriber Properties
Several operations manipulate subscriber properties. A subscriber property is a key-value pair that
affects the way the SCE analyzes and reacts to network traffic generated by the subscriber.

More information about properties can be found in the SCMS Subscriber Manager User Guide
and in your application's User Guide (SCAS BB or SCAS M). The application user guide provides
application-specific information; it lists the subscriber properties that exist in the application
running on your system, the allowed value set, and the significance of each property value.

To format subscriber properties for Java API operations, use the String arrays propertyKeys and
propertyValues.

Note The arrays must be of the same length, and NULL entries are forbidden. Each key in the keys array has
a matching entry in the values array; the value for propertyKeys[j] resides in
propertyValues[j].The mapping type of an IP Range is identical to the mapping type of the IP
address.

Example:

• If the property keys array is {“name”,“color”,“shape”} and the property values array is
{“john”,“red”,“circle”}, the properties will be name=john, color=red,
shape=circle.

Custom Properties
Some operations manipulate custom properties. Custom properties are similar to subscriber
properties, but do not affect how the SCE analyzes and manipulates the subscriber's traffic. The
application management modules use custom properties to store additional information for each
subscriber.

To format custom properties, use the String arrays customPropertyKeys and
customPropertyValues, the same as in formatting Subscriber Properties (on page 2-6).

Chapter 2 General API Concepts

DisconnectListener Interface

SCMS SM Java API Programmer's Guide

OL-138634 2-7

DisconnectListener Interface
Both APIs (Blocking and Non-blocking) allow setting a disconnect listener. The disconnect
listener is an interface with a single method:
public interface DisconnectListener {

 /**
 * called when the connection with the server is down.
 */
 public void connectionIsDown();
}

An API user who wants to be notified when the API is disconnected from the SM should
implement this interface.

To set a disconnect listener, use the setDisconnectListener method.

Example:

• Following is a simple implementation of a disconnect listener that prints a message to stdout
and exits.

import com.pcube.management.framework.rpc.DisconnectListener;

public class MyDisconnectListener implements DisconnectListener {

 public void connectionIsDown(){
 System.out.println(“Message: connection is down.”);
 System.exit(0);
 }
}

Exceptions
Note that all functional errors of the SM Java API are provided by the same Java class,
com.pcube.management.framework.rpc.RpcErrorException, which is contrary to normal
Java usage. This “contrary” approach was chosen because of the “cross-language” nature of the
SM API: it allows all the SM API implementations (Java, C, C++) to look and feel the same.

Each exception provides the following information:

• A unique error code (long)

• An informative message (java.lang.String)

• A server-side stack trace (java.lang.String)

The error code can be interpreted using com.pcube.management.api.SMApiConstants. See
the List of Error Codes (on page A-1) for more details about error codes and their significance.

Note Several types of errors can occur only when the Blocking API is used. These are operational errors
related to operation-timeout handling. They are described in detail in the Blocking API (on page 3-1)
chapter.

SCMS SM Java API Programmer's Guide

OL-138634 3-1

This chapter introduces the Reply Timeout, a feature unique to the Blocking API. The rest of the
chapter lists all operations of the Blocking API, and provides code examples.

Note If you only need to develop an automatic integration, skip this chapter and go directly to the Non-
blocking API (on page 4-1) chapter.

This chapter contains the following sections:

• Multi-threading Support 3-1

• ReplyTimeout and OperationTimeout Exception 3-2

• Blocking API Methods 3-3

• Blocking API Code Examples 3-26

Multi-threading Support
The Blocking API supports unlimited number of threads calling its methods simultaneously.

Note In a multi-threaded scenario for the Blocking API, the order of invocation is not guaranteed.

C H A P T E R 3

Blocking API

Chapter 3 Blocking API

 ReplyTimeout and OperationTimeout Exception

 SCMS SM Java API Programmer's Guide

3-2 OL-138634

Example:

• Thread-0 calls operation-0 at time-0, and thread-1 calls operation-1 at time-1, where time-1 is
later than time-0. In this example, it is possible that operation-1 may be performed before
operation-0, as shown in the following diagram (the vertical scale is time):

ReplyTimeout and OperationTimeout Exception
A blocking operation returns only when the operation result has been retrieved from the SM. If a
networking malfunction or other error prevents the operation result from being retrieved, the
caller will wait indefinitely. The SM API provides means of working around this situation.

The reply timeout feature (the setReplyTimeout method) lets the caller set a timeout. It will
fire a com.pcube.management.framework.rpc.OperationTimeoutException when a
reply does not return within the timeout period.

Calling the setReplyTimeout method with a long value sets a reply timeout. The reply timeout
is interpreted in milliseconds. A zero value indicates that the operation should wait (freeze, hang)
until a result arrives - or indefinitely, if no result arrives.

There is an alternate way of releasing a method call that is blocking the caller, who is waiting for
a result to arrive: Call the interrupt method of the calling thread: a
java.lang.InterruptedException will then be returned to the caller.

Chapter 3 Blocking API

Blocking API Methods

SCMS SM Java API Programmer's Guide

OL-138634 3-3

Blocking API Methods
This section lists the methods of the Blocking API. The signature of each method is followed by a
description of its input parameters and its return values.

The Blocking API is a superset of the Non-blocking API. Except for differences in return values
and result handling, identical operations in both APIs have the same semantics.

All the methods throw a java.lang.IllegalStateException when called before a
connection with the SM is established.

The Blocking API methods may be classified into the following categories:

• Dynamic IP and property allocation- For example, by using the SM API for integration with
an AAA system, the following methods are relevant. (Note, these methods are not designed to
add or remove subscribers from the database, but to modify dynamic parameters (such as IP
addresses) of existing subscribers.)

• login (on page 3-4)

• logoutByName

• logoutByNameFromDomain

• logoutByMapping

• loginCable (on page 3-10)

• logoutCable (on page 3-12)

• Static/Manual Subscriber configuration- For example, for GUI usage, the following
methods are relevant:

• addSubscriber (on page 3-13)

• removeSubscriber (on page 3-15)

• removeAllSubscribers (on page 3-16)

• setPropertiesToDefault (on page 3-25)

• removeCustomProperties (on page 3-25)

• For simple read-only operations, performed independently on the subscriber awareness mode,
the following methods are relevant:

• getNumberOfSubscribers (on page 3-16)

• getNumberOfSubscribersInDomain (on page 3-16)

• getSubscriber (on page 3-17)

• subscriberExists ("RPC Exception Error Codes" on page 3-18)

• subscriberLoggedIn (on page 3-19)

• getSubscriberNameByMapping (on page 3-19)

• getSubscriberNames (on page 3-20)

• getSubscriberNamesInDomain (on page 3-22)

• getSubscriberNamesWithPrefix (on page 3-22)

Chapter 3 Blocking API

 Blocking API Methods

 SCMS SM Java API Programmer's Guide

3-4 OL-138634

• getSubscriberNamesWithSuffix (on page 3-23)

• getDomains (on page 3-24)

It is possible to mix methods from different categories in a single application. The classification is
presented for clarification purposes only.

login

Syntax
public void login(String subscriberName,
 String[] mappings,
 short[] mappingTypes,
 String[] propertyKeys,
 String[] propertyValues,
 String domain,
 boolean isMappingAdditive,
 int autoLogoutTime)
throws InterruptedException, OperationTimeoutException,
RpcErrorException

Description
The login method adds or modifies a domain, mappings and possibly properties of a subscriber
who already exists in the SM database. Login can be called with partial data; for example, with
only mappings or only properties provided and NULL put in the unchanged fields.

If another subscriber with the same (or colliding) mappings already exists in the same domain, the
colliding mappings will be removed from the other subscriber and assigned to the new subscriber.

If the subscriber does not exist in the SM database, it will be created with the data provided.

Chapter 3 Blocking API

Blocking API Methods

SCMS SM Java API Programmer's Guide

OL-138634 3-5

Parameters
subscriberName: See explanation of subscriber name format (on page 2-4) in the General API
Concepts (on page 2-1) chapter.

mappings: See explanation of mappings and mapping types ("Network ID Mappings" on page
2-4) in the General API Concepts (on page 2-1) chapter.
If no mappings are specified, and the isMappingAdditive flag is TRUE, the previous
mappings will be retained. If no such mappings exist, the operation will fail.

mappingTypes: See explanation of mappings and mapping types ("Network ID Mappings" on
page 2-4) in the General API Concepts (on page 2-1) chapter.

propertyKeys: See explanation of property keys and values in the General API Concepts (on
page 2-1) chapter.

propertyValues: See explanation of property keys and values in the General API Concepts
(on page 2-1) chapter.

domain: See explanation of domains in the General API Concepts (on page 2-1) chapter.
If domain is NULL, but the subscriber already has a domain, the existing domain will be retained.
isMappingAdditive:

• TRUE: adds the mappings provided by this call to the subscriber record.

• FALSE: overrides the mappings provided by this call with mappings that already exist in the
subscriber record.

autoLogoutTime:

Applies only to mappings provided as arguments to this method.

• Positive value (N): automatically logs out the mappings (similar to a logout method being
called) after N seconds.

• 0 value: maintains current expiration time for the given mappings.

• Negative value: disables any expiration time that might have been set for the mappings given.

RPC Exception Error Codes
Following is the list of error codes that may be returned by this method:

• ERROR_CODE_ILLEGAL_SUBSCRIBER_NAME

• ERROR_CODE_BAD_SUBSCRIBER_MAPPING

• ERROR_CODE_SUBSCRIBER_DOMAIN_ASSOCIATION

• ERROR_CODE_UNKNOWN can be caused by the following:
• NULL value for domain parameter for the subscriber that does not
exist/does not have a domain

• Invalid values for propertyValues parameter

For error codes list see Appendix A - List of Error Codes.

Chapter 3 Blocking API

 Blocking API Methods

 SCMS SM Java API Programmer's Guide

3-6 OL-138634

Return Value
None.

Examples
To add the IP address 192.168.12.5 to an existing subscriber named john without affecting
existing mappings:
login(
 “john”, // subscriber name
 new String[]{“192.168.12.5”},
 SMApiConstants.ALL_IP_MAPPINGS,
 null, null,
 ”subscribers”, // domain
 true, // isMappingAdditive is true
 -1); // autoLogoutTime set to infinite

To add the IP address 192.168.12.5 overriding previous mappings:
login(
 “john”, // subscriber name
 new String[]{“192.168.12.5”},
 SMApiConstants.ALL_IP_MAPPINGS,
 null, null,
 ”subscribers”, // domain
 false, // isMappingAdditive is false
 -1); // autoLogoutTime set to infinite

To extend the auto logout time of 192.168.12.5 that was previously assigned to john:
login(
 “john”,
 //the previously assigned IP
 new String[]{“192.168.12.5”},
 SMApiConstants.ALL_IP_MAPPINGS,
 null, null,
 “subscribers”, // domain
 false, // isMappingAdditive
 300); // autoLogoutTime set to 300 seconds

To modify a dynamic property of john (e.g. package ID):
login(
 “john”,
 null, null,
 new String[]{“packageId”}, // property key
 new String[]{“10”}, // property value
 “subscribers”, // domain
 false, -1);

To add the IP address 192.168.12.5 to an existing subscriber named john without affecting
existing mappings and modify a dynamic property of john (e.g. package ID):
login(
 “john”,
 new String[]{“192.168.12.5”},
 SMApiConstants.ALL_IP_MAPPINGS,
 new String[]{“packageId”}, // property key
 new String[]{“10”}, // property value
 “subscribers”, // domain
 true, // isMappingAdditive is set to true
 -1);

Chapter 3 Blocking API

Blocking API Methods

SCMS SM Java API Programmer's Guide

OL-138634 3-7

logoutByName

Syntax
public boolean logoutByName(String subscriberName,
 String[] mappings,
 short[] mappingTypes)
throws InterruptedException, OperationTimeoutException,
RpcErrorException

Description
Locates the subscriber in the database and removes mappings from it. If the subscriber does not
exist it does nothing.

Parameters
subscriberName: See explanation of subscriber name format (on page 2-4) in the General API
Concepts (on page 2-1) chapter.

mappings: See explanation of mappings and mapping types ("Network ID Mappings" on page
2-4) in the General API Concepts (on page 2-1) chapter.
If no mappings are specified, all the subscriber mappings will be removed.

mappingTypes: See explanation of mappings and mapping types ("Network ID Mappings" on
page 2-4) in the General API Concepts (on page 2-1) chapter.

Return Value
• TRUE: if the subscriber was found and the subscriber's mappings were removed from the

subscriber database.

• FALSE: if the subscriber was not found in the subscriber database.

RPC Exception Error Codes
Following is the list of error codes that may be returned by this method:

• ERROR_CODE_SUBSCRIBER_DOES_NOT_EXIST

• ERROR_CODE _BAD_SUBSCRIBER_MAPPING

• ERROR_CODE_SUBSCRIBER_DOMAIN_ASSOCIATION

• ERROR_CODE_DOMAIN_NOT_FOUND

• ERROR_CODE_NOT_A_SUBSCRIBER_DOMAIN

For error codes description see Appendix A - List of Error Codes.

Chapter 3 Blocking API

 Blocking API Methods

 SCMS SM Java API Programmer's Guide

3-8 OL-138634

Example
To remove IP address 192.168.12.5 of subscriber john:
boolean isExist = logoutByName(
 “john”,
 new String[]{“192.168.12.5”},
 SMApiConstants.ALL_IP_MAPPINGS);

To remove all IP addresses of subscriber john:
boolean isExist = logoutByName(“john”, null, null);

logoutByNameFromDomain

Syntax
public boolean logoutByNameFromDomain(String subscriberName,
 String[] mappings,
 short[] mappingTypes,
 String domain)
throws InterruptedException, OperationTimeoutException,
RpcErrorException

Description
Similar to logoutByName, but also lets the caller provide the name of the domain to which the
subscriber belongs. When the subscriber domain is known, use this method to get improved
performance.

Parameters
subscriberName: See explanation of subscriber name format (on page 2-4) in the General API
Concepts (on page 2-1) chapter.

mappings: See explanation of mappings and mapping types ("Network ID Mappings" on page
2-4) in the General API Concepts (on page 2-1) chapter.
If no mappings are specified, all the subscriber mappings will be removed.

mappingTypes: See explanation of mappings and mapping types ("Network ID Mappings" on
page 2-4) in the General API Concepts (on page 2-1) chapter.

domain: See explanation of domains in the General API Concepts (on page 2-1) chapter.
The operation will fail if either of the following conditions exists:

• The domain is null, but the subscriber exists in the database and belongs to a domain.

• The domain specified is incorrect.

Return Value
• TRUE: if the subscriber was found and removed from the subscriber database

• FALSE: if the subscriber was not found in the subscriber database.

Chapter 3 Blocking API

Blocking API Methods

SCMS SM Java API Programmer's Guide

OL-138634 3-9

RPC Exception Error Codes
Following is the list of error codes that may be returned by this method:

• ERROR_CODE_SUBSCRIBER_DOES_NOT_EXIST

• ERROR_CODE _BAD_SUBSCRIBER_MAPPING

• ERROR_CODE_SUBSCRIBER_DOMAIN_ASSOCIATION

• ERROR_CODE_DOMAIN_NOT_FOUND

• ERROR_CODE_NOT_A_SUBSCRIBER_DOMAIN

For error codes description see Appendix A - List of Error Codes.

Example
To remove IP address 192.168.12.5 of subscriber john from domain subscribers:
boolean isExist = logoutByNameFromDomain(
 “john”,
 new String[]{“192.168.12.5”},
 SMApiConstants.ALL_IP_MAPPINGS,
 “subscribers”);

To remove all IP addresses of subscriber john from domain subscribers:
boolean isExist = logoutByNameFromDomain(
 “john”,
 null,
 null,
 “subscribers”);

logoutByMapping

Syntax
public boolean logoutByMapping(String mapping,
 short mappingType,
 String domain)
throws InterruptedException, OperationTimeoutException,
RpcErrorException

Description
Locates a subscriber based on domain and mapping, and removes the mapping (the subscriber
stays in the database).

Parameters
mapping: See explanation of mappings and mapping types ("Network ID Mappings" on page 2-
4) in the General API Concepts (on page 2-1) chapter.

mappingType: See explanation of mappings and mapping types ("Network ID Mappings" on
page 2-4) in the General API Concepts (on page 2-1) chapter.

domain: See description in logoutByNameFromDomain (on page 3-8) operation.

Chapter 3 Blocking API

 Blocking API Methods

 SCMS SM Java API Programmer's Guide

3-10 OL-138634

Return Value
• TRUE: if the subscriber was found and removed from the subscriber database.

• FALSE: if the subscriber was not found in the subscriber database.

RPC Exception Error Codes
Following is the list of error codes that may be returned by this method:

• ERROR_CODE_SUBSCRIBER_DOES_NOT_EXIST

• ERROR_CODE _BAD_SUBSCRIBER_MAPPING

• ERROR_CODE_SUBSCRIBER_DOMAIN_ASSOCIATION

• ERROR_CODE_DOMAIN_NOT_FOUND

• ERROR_CODE_NOT_A_SUBSCRIBER_DOMAIN

For error codes description see Appendix A - List of Error Codes.

Example
To remove IP address 192.168.12.5 from domain subscribers:
boolean isExist = logoutByMapping(
 “192.168.12.5”,
 SMApiConstants. MAPPING_TYPE_IP,
 “subscribers”);

loginCable

Syntax
public void loginCable(String CPE,
 String CM,
 String IP,
 int lease,
 String domain,
 String[] propertyKeys,
 String[] propertyValues)
throws InterruptedException, OperationTimeoutException,
RpcErrorException

Chapter 3 Blocking API

Blocking API Methods

SCMS SM Java API Programmer's Guide

OL-138634 3-11

Description
A login method adapted for the cable environment (calls the cable support module in the SM).
This method is designed to log in CPEs and CMs to the SM. To log in a CPE, specify its CM
MAC in the CM argument and the CPE MAC in the CPE argument. To log in a CM, specify the
CM MAC address in both CPE and CM arguments. Note that the login of a CPE whose CM does
not exist in the SM database will be ignored: the CM has to exist in the database, either by import
or by a CM login operation. For additional information, see the Cable Environment Appendix of
the SCMS Subscriber Manager User Guide.

Note The name of the CPE in the SM database is the concatenation of the CPE and CM values with two
underscore ['_'] characters between them. The caller must make sure that the lengths of CPE and CM
add up to no more than 38 characters.

Parameters
CPE: A unique identifier of the CPE (usually a MAC address)

CM: A unique identifier of the cable modem (usually a MAC address)

IP: the CPE IP address

lease: the CPE lease time

domain: See explanation of domains ("Subscriber Domains" on page 2-6) in the General API
Concepts (on page 2-1) chapter.
The domain will usually be CMTS IP.

Note Domain aliases must be set on the SM in order for the CMTS IP to be correctly interpreted as a domain
name. For information regarding aliases configuration read Configuring Domains section of SCMS
Subscriber Manager User Guide.

propertyKeys: See explanation of property keys ("Subscriber Properties" on page 2-6) and
values in the General API Concepts (on page 2-1) chapter.
If the CPE is provided with partial or no application properties, the values for the missing
application properties will be copied from the application properties of the CM to which this CPE
belongs. Each CM application property thus serves as a default for the CPE under it.

propertyValues: See explanation of property keys ("Subscriber Properties" on page 2-6) and
values in the General API Concepts (on page 2-1) chapter.

Return Value
None

RPC Exception Error Codes
None

Chapter 3 Blocking API

 Blocking API Methods

 SCMS SM Java API Programmer's Guide

3-12 OL-138634

Examples
To add the IP address 192.168.12.5 to a CM called CM1 with 2 hours lease time:
loginCable(
 “CM1”,
 “CM1”,
 “192.168.12.5”,
 7200, // lease time in seconds
 “subscribers”, null, null);

To add the IP address 192.168.12.50 to a CPE called CPE1 which is behind CM1 with lease time
of 1 hours:
loginCable(
 “CPE1”,
 “CM1”,
 “192.168.12.50”,
 3600, // lease time in seconds
 “subscribers”, null, null);

logoutCable

Syntax
public boolean logoutCable(String CPE,
 String CM,
 String IP,
 String domain)

Description
Indicates a logout (CPE becoming offline) event to the SM cable support module.

Parameters
CPE: See description in the loginCable (on page 3-10) method.

CM: See description in the loginCable (on page 3-10) method.

IP: See description in the loginCable (on page 3-10) method.

domain: See description in the loginCable (on page 3-10) method.

Return Value
• TRUE: if the CPE was found and removed from the subscriber database.

• FALSE: if the CPE was not found in the subscriber database.

RPC Exception Error Codes
None

Chapter 3 Blocking API

Blocking API Methods

SCMS SM Java API Programmer's Guide

OL-138634 3-13

Examples
To remove the IP address 192.168.12.5 from CPE1 which is behind CM1:
boolean isExist = logoutCable(
 “CPE1”,
 “CM1”,
 “192.168.12.5”,
 “subscribers”);

addSubscriber

Syntax
public void addSubscriber(String subscriberName,
 String[] mappings,
 short[] mappingTypes,
 String[] propertyKeys,
 String[] propertyValues,
 String[] customPropertyKeys,
 String[] customPropertyValues,
 String domain)
throws InterruptedException, OperationTimeoutException,
RpcErrorException

Description
Creates a new subscriber record according and adds the record to the SM database.

If a subscriber by this name already exists, it will be removed before the new one is added. In
contrast to login, which modifies fields and leaves unspecified fields unchanged,
addSubscriber sets the subscriber exactly as specified by the parameters passed to it.

Note It is recommended to call login method for existing subscribers, instead of addSubscriber.
Dynamic mappings and properties should be set by using login. Static mappings and properties
should be set at the first time the subscriber is created by using addSubscriber.

Note With addSubscriber the auto-logout feature is always disabled. To enable auto-logout, use
login.

Example:
• Subscriber AB, already set up in the subscriber database, has a single IP mapping: IP1.

If an addSubscriber operation for AB is called with no mappings specified (NULL in both
the mappings and mappingTypes fields), AB will be left with no mappings.

However, calling the login operation with these NULL-value parameters will not change
AB's mappings; AB will be left with its previous IP mapping: IP1.

Chapter 3 Blocking API

 Blocking API Methods

 SCMS SM Java API Programmer's Guide

3-14 OL-138634

Parameters
subscriberName: See explanation of subscriber name format (on page 2-4) in the General API
Concepts (on page 2-1) chapter.

mappings: See explanation of mappings and mapping types ("Network ID Mappings" on page
2-4) in the General API Concepts (on page 2-1) chapter.

mappingTypes: See explanation of mappings and mapping types ("Network ID Mappings" on
page 2-4) in the General API Concepts (on page 2-1) chapter.

propertyKeys: See explanation of property keys ("Subscriber Properties" on page 2-6) and
values in the General API Concepts (on page 2-1) chapter.

propertyValues: See explanation of property keys ("Subscriber Properties" on page 2-6) and
values in the General API Concepts (on page 2-1) chapter.

customPropertyKeys: See explanation of custom property keys ("Custom Properties" on page
2-6) and values in the General API Concepts (on page 2-1) chapter.

customPropertyValues: See explanation of custom property keys ("Custom Properties" on
page 2-6) and values in the General API Concepts (on page 2-1) chapter.

domain: See explanation of domains ("Subscriber Domains" on page 2-6) in the General API
Concepts (on page 2-1) chapter.
A NULL value indicates that the subscriber is domain-less.

Return Value
None

RPC Exception Error Codes
Following is the list of error codes that may be returned by this method:

• ERROR_CODE_ILLEGAL_SUBSCRIBER_NAME

• ERROR_CODE _BAD_SUBSCRIBER_MAPPING

• ERROR_CODE_DOMAIN_NOT_FOUND

• ERROR_CODE_SUBSCRIBER_ALREADY_EXISTS

• ERROR_CODE_SUBSCRIBER_DOMAIN_ASSOCIATION

• ERROR_CODE_UNKNOWN - This error code may indicate invalid values that were
supplied for propertyValues parameter.

For error codes description see Appendix A - List of Error Codes.

Chapter 3 Blocking API

Blocking API Methods

SCMS SM Java API Programmer's Guide

OL-138634 3-15

Examples
To add a new subscriber, john, with some custom properties:
addSubscriber(
 “john”,
 null, null, // dynamic mappings will be set by
login
 null, null // dynamic properties will be set by
login
 new String[]{ // custom property keys
 “work phone”,
 “home phone”},
 new String[]{ // custom property values
 “6543212”
 “5059927”},
 “subscribers”); // default domain

removeSubscriber

Syntax
public boolean removeSubscriber(String subscriberName)
throws InterruptedException, OperationTimeoutException,
RpcErrorException

Description
Removes a subscriber completely from the SM database.

Parameters
subscriberName: See explanation of subscriber name format (on page 2-4) in the General API
Concepts (on page 2-1) chapter.

Return Value
• TRUE: if the subscriber was found in the database and successfully removed.

• FALSE: if the conditions for TRUE were not met: the subscriber was not found in the
database, or the subscriber was found but was not successfully removed.

RPC Exception Error Codes
Following is the list of error codes that may be returned by this method:

• ERROR_CODE_ILLEGAL_SUBSCRIBER_NAME

• ERROR_CODE _SUBSCRIBER_DOES_NOT_EXIST

For error codes description see Appendix A - List of Error Codes.

Example
• To remove subscriber john entirely from the database:
boolean isExist = removeSubscriber(“john”);

Chapter 3 Blocking API

 Blocking API Methods

 SCMS SM Java API Programmer's Guide

3-16 OL-138634

removeAllSubscribers

Syntax
public void removeAllSubscribers()
throws InterruptedException, OperationTimeoutException,
RpcErrorException

Description
Removes all subscribers from the SM, leaving the database with no subscribers.

Note This method may take time to execute. To avoid operation timeout exceptions, set a high operation
timeout (up to 5 minutes) before calling this method.

Return Value
None.

RPC Exception Error Codes
None.

getNumberOfSubscribers

Syntax
public int getNumberOfSubscribers()
throws InterruptedException, OperationTimeoutException,
RpcErrorException

Description
Retrieves the total number of subscribers in the SM database.

Return Value
The number of subscribers in the SM.

RPC Exception Error Codes
None

getNumberOfSubscribersInDomain

Syntax
public int getNumberOfSubscribersInDomain(String domain)
throws InterruptedException, OperationTimeoutException,
RpcErrorException

Chapter 3 Blocking API

Blocking API Methods

SCMS SM Java API Programmer's Guide

OL-138634 3-17

Description
Retrieves the number of subscribers in a subscriber domain.

Parameters
domain: A name of a subscriber domain that exists in the SM's domain repository.

Return Value
The number of subscribers in the domain provided.

RPC Exception Error Codes
Following is the list of error codes that may be returned by this method:

• ERROR_CODE_NOT_A_SUBSCRIBER_DOMAIN

• ERROR_CODE _DOMAIN_NOT_FOUND

For error codes description see Appendix A - List of Error Codes.

getSubscriber

Syntax
public Object[] getSubscriber(String subscriberName)
throws InterruptedException, OperationTimeoutException,
RpcErrorException

Description
Retrieves subscriber record. Each field is formatted as an integer, string, or string array, as
described below in the Return Value section for this method.
If the subscriber does not exist in the SM database, an exception will be returned.

Parameters
subscriberName: See explanation of subscriber name format (on page 2-4) in the General API
Concepts (on page 2-1) chapter.

Return Value
An Object Array with nine elements. The index values are listed in the following table. No array
element is NULL.
Index 0 subscriber name (java.lang.String)

Index 1 array of mappings (java.lang.String[])

Index 2 array of mapping types (short[])

Index 3 domain name (java.lang.String)

Index 4 array of property names (java.lang.String[])

Index 5 array of property values (java.lang.String[])

Chapter 3 Blocking API

 Blocking API Methods

 SCMS SM Java API Programmer's Guide

3-18 OL-138634

Index 6 array of custom property names (java.lang.String[])

Index 7 array of custom property values (java.lang.String[])

Index 8 auto-logout time, as seconds from now, or -1 if not set (long[])

RPC Exception Error Codes
Following is the error code that may be returned by this method:

• ERROR_CODE_SUBSCRIBER_DOES_NOT_EXIST

For error codes description see Appendix A - List of Error Codes.

Example
To retrieve the subscriber record of john:
Object[] subRecord = getSubscriber(“john”);
String[] mappings = (String[])subRecord[1]
short[] mappingTypes = {short[])subRecord[2];
String domainName = (String)subRecord[3];
String[] propertyNames = (String[])subRecord[4];
String[] propertyValues = (String[])subRecord[5];
String[] customPropertyName = (String[])subRecord[6];
String[] customPropertyValues = (String[])subRecord[7];
long[] autoLogoutTime = (long[])subRecord[8];

subscriberExists

Syntax
public boolean subscriberExists(String subscriberName)
throws InterruptedException, OperationTimeoutException,
RpcErrorException

Description
Verifies that a subscriber exists in the SM database.

Parameters
subscriberName: See explanation of subscriber name format (on page 2-4) in the General API
Concepts (on page 2-1) chapter

Return Value
• TRUE: if the subscriber was found in the SM database.

• FALSE: if the subscriber could not be found.

RPC Exception Error Codes
None

Chapter 3 Blocking API

Blocking API Methods

SCMS SM Java API Programmer's Guide

OL-138634 3-19

subscriberLoggedIn

Syntax
public boolean subscriberLoggedIn(String subscriberName)
throws InterruptedException, OperationTimeoutException,
RpcErrorException

Description
Checks whether a subscriber that already exists in the SM database is logged in, that is, if the
subscriber also exists in some SCE database.

Note that when the SM is configured to work in Pull mode, a TRUE value returned by this
method does not guarantee that the subscriber actually exists in some SCE database, but rather
that the subscriber is available to be pulled by an SCE if needed.

If the subscriber does not exist in the SM database, an exception will be returned.

Parameters
subscriberName: See explanation of subscriber name format (on page 2-4) in the General API
Concepts (on page 2-1) chapter.

Return Value
• TRUE: if the subscriber is logged in.

• FALSE: if the subscriber is not logged in.

RPC Exception Error Codes
Following is the list of error codes that may be returned by this method:

• ERROR_CODE_ILLEGAL_SUBSCRIBER_NAME

For error codes description see Appendix A - List of Error Codes.

getSubscriberNameByMapping

Syntax
public String getSubscriberNameByMapping(String mapping,
 short mappingType,
 String domain)
throws InterruptedException, OperationTimeoutException,
RpcErrorException

Description
Finds a subscriber name according to a mapping and a domain.

Chapter 3 Blocking API

 Blocking API Methods

 SCMS SM Java API Programmer's Guide

3-20 OL-138634

Parameters
mapping: See explanation of mappings and mapping types ("Network ID Mappings" on page 2-
4) in the General API Concepts (on page 2-1) chapter.

mappingType: See explanation of mappings and mapping types ("Network ID Mappings" on
page 2-4) in the General API Concepts (on page 2-1) chapter.

domain: The name of the domain to which the subscriber belongs to. The operation will fail if
either of the following conditions exists:

• The domain is null, but the subscriber exists in the database and belongs to a domain.

• The specified domain is incorrect.

Return Value
• Subscriber name: if a subscriber record was found.

• NULL: if no subscriber record could be found.

RPC Exception Error Codes
Following is the list of error codes that may be returned by this method:

• ERROR_CODE_DOMAIN_NOT_FOUND

• ERROR_CODE _BAD_SUBSCRIBER_MAPPING

• ERROR_CODE_NOT_A_SUBSCRIBER_DOMAIN

For error codes description see Appendix A - List of Error Codes.

getSubscriberNames

Syntax
public String[] getSubscriberNames(String lastBulkEnd,
 int numOfSubscribers)
throws InterruptedException, OperationTimeoutException,
RpcErrorException

Description
Gets a bulk of subscriber names from the SM database, starting with lastBulkEnd followed by
the next numOfSubscribers subscribers (in alphabetical order).

If lastBulkEnd is NULL, the (alphabetically) first subscriber name that exists in the SM
database will be used.

Note There is no guarantee that the total number of subscribers (in all bulks) will equal the value returned
from getNumOfSubscribers at any time. They may differ, for example, if some subscribers are
added or removed while bulks are being retrieved.

Chapter 3 Blocking API

Blocking API Methods

SCMS SM Java API Programmer's Guide

OL-138634 3-21

Parameters
lastBulkEnd: Last subscriber name from last bulk. Use NULL to start with the first
(alphabetic) subscriber.

numOfSubscribers: Limit on number of subscribers that will be returned. If this value is
higher than the SM limit (1000), the SM limit will be used.

Note Providing values higher than 500 to this parameter is not recommended.

Return Value
An array of subscriber names ordered alphabetically.

The method will return as many subscribers as are found in the SM database, starting at the
requested subscriber. The array size is limited by the minimum between numOfSubscribers
and the SM limit (1000).

RPC Exception Error Codes
Following is error code that may be returned by this method:

• ERROR_CODE_ILLEGAL_SUBSCRIBER_NAME

For error codes description see Appendix A - List of Error Codes.

Example
boolean hasMoreSubscribers;
String lastBulkEnd = null;
int bulkSize = 100;

do {
 String[] subscribers = smApi.getSubscriberNames(lastBulkEnd, bulkSize);

 hasMoreSubscribers = false;
 if (subscribers != null) {
 for (int i = 0; i < subscribers.length; i++) {
 // do something with subscribers[i]
 }
 if (subscribers.length == bulkSize) {
 hasMoreSubscribers = true;
 lastBulkEnd = subscribers[bulkSize - 1];
 }
 }

} while (hasMoreSubscribers);

Chapter 3 Blocking API

 Blocking API Methods

 SCMS SM Java API Programmer's Guide

3-22 OL-138634

getSubscriberNamesInDomain

Syntax
public String[] getSubscriberNamesInDomain(String lastBulkEnd,
 int numOfSubscribers,
 String domain)
throws InterruptedException, OperationTimeoutException,
RpcErrorException

Description
Gets subscribers in the SM database that are associated with the specified domain.

The semantics of this operation are the same as the semantics of the getSusbcriberNames
("getSubscriberNames" on page 3-20) operation.

Parameters
lastBulkEnd: See description in getSusbcriberNames ("getSubscriberNames" on page 3-
20) operation.

numOfSubscribers: See description in getSusbcriberNames ("getSubscriberNames" on
page 3-20) operation.

domain: The name of a subscriber domain that exists in the SM domain repository.

Return Value
An alphabetically ordered array of subscriber names that belong to the domain provided.

See also the documentation of the Return Value section of the getSusbcriberNames
("getSubscriberNames" on page 3-20) operation.

RPC Exception Error Codes
Following is the list of error codes that may be returned by this method:

• ERROR_CODE_ILLEGAL_SUBSCRIBER_NAME

• ERROR_CODE _DOMAIN_NOT_FOUND

For error codes description see Appendix A - List of Error Codes.

getSubscriberNamesWithPrefix

Syntax
public String[] getSubscriberNamesWithPrefix(String lastBulkEnd,
 int numOfSubscribers,
 String prefix)
throws InterruptedException, OperationTimeoutException,
RpcErrorException

Chapter 3 Blocking API

Blocking API Methods

SCMS SM Java API Programmer's Guide

OL-138634 3-23

Description
Gets subscribers in the SM database whose name begins with a specified prefix.

The semantics of this operation are the same as the semantics of the getSusbcriberNames
("getSubscriberNames" on page 3-20) operation.

Parameters
lastBulkEnd: See description in getSusbcriberNames ("getSubscriberNames" on page 3-
20) operation.

numOfSubscribers: See description in getSusbcriberNames ("getSubscriberNames" on
page 3-20) operation.

prefix: A case-sensitive string that marks the prefix of the required subscriber names.

Return Value
An alphabetically ordered array of subscriber names that start with the prefix required.

See also the documentation of the Return Value section of the getSusbcriberNames
("getSubscriberNames" on page 3-20) operation.

RPC Exception Error Codes
Following is error code that may be returned by this method:

• ERROR_CODE_ILLEGAL_SUBSCRIBER_NAME

For error codes description see Appendix A - List of Error Codes.

getSubscriberNamesWithSuffix

Syntax
public String[] getSubscriberNamesWithSuffix(String lastBulkEnd,
 int numOfSubscribers,
 String suffix)
throws InterruptedException, OperationTimeoutException,
RpcErrorException

Description
Gets subscribers in the SM database whose names end with the specified suffix.

The semantics of this operation are the same as the semantics of the getSusbcriberNames
("getSubscriberNames" on page 3-20) operation.

Chapter 3 Blocking API

 Blocking API Methods

 SCMS SM Java API Programmer's Guide

3-24 OL-138634

Parameters
lastBulkEnd: See description in getSusbcriberNames ("getSubscriberNames" on page 3-
20) operation

numOfSubscribers: See description in getSusbcriberNames ("getSubscriberNames" on
page 3-20) operation.

suffix- A case-sensitive string that marks the suffix of the required subscriber names.

Return Value
An alphabetically ordered array of subscriber names that end with the suffix required.

See also the documentation of the Return Value section of the getSusbcriberNames
("getSubscriberNames" on page 3-20) operation.

RPC Exception Error Codes
Following is the error code that may be returned by this method:

• ERROR_CODE_ILLEGAL_SUBSCRIBER_NAME

For error codes description see Appendix A - List of Error Codes.

getDomains

Syntax
public String[] getDomains()
throws InterruptedException, OperationTimeoutException,
RpcErrorException

Description
Provides the list of current subscriber domains in the SM domain repository.

Return Value
A complete list of subscriber domain names in the SM.

RPC Exception Error Codes
None

Chapter 3 Blocking API

Blocking API Methods

SCMS SM Java API Programmer's Guide

OL-138634 3-25

setPropertiesToDefault

Syntax
public void setPropertiesToDefault(String subscriberName,
 String[] properties)
throws InterruptedException, OperationTimeoutException,
RpcErrorException

Resets the specified application properties of a subscriber. If an application is installed, the
relevant application properties will be set to the default value of the properties according to the
currently loaded application information. If an application is not installed, a
java.lang.IllegalStateException will be returned.

Parameters
subscriberName: See explanation of subscriber name format (on page 2-4) in the General API
Concepts (on page 2-1) chapter.

properties: See explanation of property keys ("Subscriber Properties" on page 2-6) and values
in the General API Concepts (on page 2-1) chapter.

Return Value
None.

RPC Exception Error Codes
Following is the list of error codes that may be returned by this method:

• ERROR_CODE_ILLEGAL_SUBSCRIBER_NAME

• ERROR_CODE _BAD_SUBSCRIBER_MAPPING

• ERROR_CODE_DOMAIN_NOT_FOUND

• ERROR_CODE_SUBSCRIBER_DOES_NOT_EXIST

• ERROR_CODE_NOT_A_SUBSCRIBER_DOMAIN

For error codes description see Appendix A - List of Error Codes.

removeCustomProperties

Syntax
public void removeCustomProperties(String subscriberName,
 String[] customProperties)
throws InterruptedException, OperationTimeoutException,
RpcErrorException

Description
Resets the specified custom properties of a subscriber.

Chapter 3 Blocking API

 Blocking API Code Examples

 SCMS SM Java API Programmer's Guide

3-26 OL-138634

Parameters
subscriberName: See explanation of subscriber name format (on page 2-4) in the General API
Concepts (on page 2-1) chapter.

CustomProperties: See explanation of custom property keys ("Custom Properties" on page 2-
6) and values in the General API Concepts (on page 2-1) chapter.

Return Value
None.

RPC Exception Error Codes
Following is the list of error codes that may be returned by this method:

• ERROR_CODE_ILLEGAL_SUBSCRIBER_NAME

• ERROR_CODE _SUBSCRIBER_DOES_NOT_EXIST

For error codes description see Appendix A - List of Error Codes.

Blocking API Code Examples
This section gives two code examples:

• Getting number of subscribers

• Adding subscriber, printing subscriber information, removing subscriber

Getting Number of Subscribers
The following example prints to stdout the total number of subscribers in the SM database and
the number of subscribers in each subscriber domain.

Chapter 3 Blocking API

Blocking API Code Examples

SCMS SM Java API Programmer's Guide

OL-138634 3-27

package blocking;

import com.pcube.management.api.SMBlockingApi;

public class PrintInfo {
 public static void main (String args[]) throws Exception {
 SMBlockingApi bapi = new SMBlockingApi();
 try {
 //initiation
 bapi.setReplyTimeout(300000); //set timeout for 5 minutes
 bapi.connect(args[0]); // connect to the SM

 //operations
 String[] domains=bapi.getDomains();
 int totalSubscribers=bapi.getNumberOfSubscribers();
 System.out.println(
 "number of susbcribers in the database:\t\t "+
 totalSubscribers);
 for (int i=0; i<domains.length; i++) {
 int numberOfSusbcribersInDomain=
 bapi.getNumberOfSubscribersInDomain(domains[i]);
 System.out.println(
 "number of susbcribers domain "+domains[i]+
 ":\t\t "+numberOfSusbcribersInDomain);
 }
 } finally {
 //finalization
 bapi.disconnect();
 }
 }
}

Adding Subscriber, Printing Information, Removing Subscriber
The following program adds a subscriber to the subscriber database, then gets its information and
prints it to stdout, and finally removes the subscriber from the subscriber database.

Chapter 3 Blocking API

 Blocking API Code Examples

 SCMS SM Java API Programmer's Guide

3-28 OL-138634

package blocking;

import com.pcube.management.api.SMBlockingApi;
import com.pcube.management.api.SMApiConstants;

public class AddPrintRemove {
 public static void main (String args[]) throws Exception {
 checkArguments(args);
 SMBlockingApi bapi = new SMBlockingApi();
 try {
 //initiation
 bapi.setReplyTimeout(10000); //set timeout for 10 seconds
 bapi.connect(args[0]); // connect to the SM
 //add subscriber
 System.out.println("+ adding subscriber to SM");
 bapi.addSubscriber(
 args[1], //name
 new String[]{args[2]}, //mapping`
 SMApiConstants.ALL_IP_MAPPINGS,
 new String[]{args[3]}, //property key
 new String[]{args[4]}, //property value
 new String[]{"custom-key"}, //custom property key
 new String[]{"custom-value"}, //custom property value
 args[5]); //domain
 //Print subscriber
 System.out.println("+ Printing subscriber");
 Object[] subfields = bapi.getSubscriber(args[1]);
 System.out.println("\tname:\t\t"+subfields[0]);
 System.out.println("\tmapping:\t"+
 ((String[])subfields[1])[0]);
 System.out.println("\tdomain:\t\t"+subfields[3]);
 System.out.println("\tautologout:\t"+subfields[8]);
 //Remove subscriber
 System.out.println("+ removing subscriber from SM");
 bapi.removeSubscriber(args[1]);
 } finally {
 //finalization
 bapi.disconnect();
 }
 }

 static void checkArguments(String[] args) throws Exception{
 if (args.length != 6) {
 System.err.println(
 "usage: java AddPrintRemove <SM-address>"+
 " <subscriber-name> <IP mapping> <property-key>"+
 " <property-value> <domain>");
 System.exit(1);
 }
 }
}

SCMS SM Java API Programmer's Guide

OL-138634 4-1

This chapter introduces features unique to the Non-blocking API. It then lists all methods of the
Non-blocking API, and ends with code examples.

This chapter contains the following sections:

• Reliability Support 4-1

• Auto-reconnect Support 4-2

• Multi-threading Support 4-2

• ResultHandler Interface 4-3

• Non-blocking API Construction 4-4

• Non-blocking API Initialization 4-5

• Non-blocking API Methods 4-6

• Non-blocking API Code Examples 4-8

Reliability Support
The Non-blocking API can work in two different modes, reliable and non-reliable, as described
below. When the mode is not specified, the default is reliable mode.

C H A P T E R 4

Non-blocking API

Chapter 4 Non-blocking API

 Auto-reconnect Support

 SCMS SM Java API Programmer's Guide

4-2 OL-138634

Reliable Mode
In reliable mode the API ensures that no requests to the SM are lost. The API maintains an
internal storage for all API requests that were sent to the SM. Only after a reply from the SM is
received, is the request considered committed and the API can remove the request from its
internal storage. In case of connection failure between the API and the SM, the API accumulates
all requests in its internal storage until the connection to the SM is established. On reconnection,
the API resends all non-committed requests to the SM, so that no requests are lost.

Note In reliable mode, the order of resending requests is guaranteed: the API resends the requests in the
same chronological order that they were called.

Non-reliable Mode
In non-reliable mode the API does not ensure that requests sent to the SM are executed. Also, all
requests that are sent by the API when connection to the SM is down will be lost unless some
external reliability mechanism is implemented.

Auto-reconnect Support
The Non-blocking API supports auto-reconnection to the SM in case of connection failure. When
this option is activated, the API can determine when the connection to the SM is lost. When the
connection is lost, the API activates a reconnection task that tries to reconnect to the SM until it is
successful.

Note The auto-reconnect support option can be activated regardless of the reliability mode.

Multi-threading Support
The Non-blocking API supports an unlimited number of threads calling its methods
simultaneously.

Note In a multi-threaded scenario for the Non-blocking API, the order of invocation is guaranteed: the API
performs operations in the same chronological order that they were called.

Chapter 4 Non-blocking API

ResultHandler Interface

SCMS SM Java API Programmer's Guide

OL-138634 4-3

ResultHandler Interface
The Non-blocking API enables setting a result handler. A result handler is an interface with two
methods, handleSuccess and handleError, as outlined in the following code:
public interface ResultHandler {

 /**
 * handle a successful result
 */
 public void handleSuccess(long handle, Object result);

 /**
 * handle a failure result
 */
 public void handleError(long handle, Object result);
}

You should implement this interface if you want to be informed about the success/error results of
operations performed through the API.

Note This is the only interface for retrieving results; they cannot be returned immediately after the API
method has returned to the caller.
In order to be able to receive operation results, you should set the result handler of the API before
calling API methods whose results you want to receive. It is a good practice to set the result handler
after the API is connected (as in the example below).

Both handleSuccess and handleError methods accept two parameters:

• Handle: Each API operation's return-value is a handle of type long. This handle enables
correlation between operation calls and their results. When a handle... operation is called
with a handle of value X, the result will match the operation that returned the same handle
value (X) to the caller.

• Result:: The actual result of the operation. Some operations may return a result of NULL.

Example:

• The following is a simple implementation of a result handler that prints a message to stdout
(when the result is success) or to stderr (when the result is failure). This main method
instantiates the API and assigns a result handler.

For correct operation of the result handler, follow the code sequence given in the example.

Note This example does not demonstrate the use of callback handles.

import com.pcube.management.framework.rpc.ResultHandler;

Chapter 4 Non-blocking API

 Non-blocking API Construction

 SCMS SM Java API Programmer's Guide

4-4 OL-138634

import com.pcube.management.api.SMNonBlockingApi;

public class ResultHandlerExample implements ResultHandler{

 public void handleSuccess(long handle, Object result) {
 System.out.println("success: handle="+handle+
 ", result="+result);
 }

 public void handleError(long handle, Object result) {
 System.err.println("error: handle="+handle+
 ", result="+result);
 }

 public static void main (String args[]) throws Exception{
 if (args.length != 1) {
 System.err.println
 ("usage:
ResultHandlerExample <sm-ip>");
 System.exit(1);
 }

 //note the order of operations!
 SMNonBlockingApi nbapi = new SMNonBlockingApi();
 nbapi.connect(args[0]);
 nbapi.setResultHandler(new ResultHandlerExample());
 nbapi.login(...);
 }
}

Non-blocking API Construction
In addition to the constructors described in API Construction (on page 2-2), the Non-blocking API
provides constructors that enable setting the reconnect period and the reliability mode.

Syntax:

The syntax for the additional Non-blocking API constructors is shown in the following code
block:
public SMNonBlockingApi(long autoReconnectInterval)

public SMNonBlockingApi(boolean reliable, long autoReconnectInterval)

public SMNonBlockingApi(String legName, long autoReconnectInterval)

public SMNonBlockingApi(String legName,
 boolean reliable,
 long autoReconnectInterval)

Arguments:

Following is a description of the constructor arguments for the additional Non-blocking API
constructors:

• autoReconnectInterval

Defines the interval (in milliseconds) for attempting reconnection by the
reconnection task, as follows:

Chapter 4 Non-blocking API

Non-blocking API Initialization

SCMS SM Java API Programmer's Guide

OL-138634 4-5

• value is 0 or less: the reconnection task is not activated (no auto-reconnect is attempted).

• value is greater than 0: in case of connection failure, the reconnection task will be
activated every <autoReconnectInterval> milliseconds.

Default value: -1 (no auto-reconnect is attempted).

Note In order to enable the auto-reconnect support, the connect method of the API must be activated at
least once. For more information see, Non-blocking API Code Examples (on page 4-8).

• reliable

A flag that defines whether the API should work in reliable mode, as follows:

• TRUE: the API works in reliable mode.

• FALSE: the API works in non-reliable mode.

Default value: TRUE (the API works in reliable mode).
• legName

The name of the LEG, as described in API Construction (on page 2-2).

Examples:

The following code constructs a reliable API with an auto-reconnection interval of 10 seconds:
SMNonBlockingAPI nbapi = SMNonBlockingAPI(10000);
nbapi.connect(<SM IP address>);

The following code constructs a reliable API without auto-reconnection support:
// API construction
SMNonBlockingAPI nbapi = SMNonBlockingAPI();

// Connect to the API
nbapi.connect(<SM IP address>);

The following code constructs a non-reliable API with auto-reconnection support:
// API construction
SMNonBlockingAPI nbapi = SMNonBlockingAPI(false,10000);

// Initial connection - to enable the reconnect task
nbapi.connect(<SM IP address>);

Non-blocking API Initialization
The Non-blocking API enables initializing certain internal properties for API customization. This
initialization is done using API init method.

Note For the settings to take effect, the init method must be called before the connect method.

Chapter 4 Non-blocking API

 Non-blocking API Methods

 SCMS SM Java API Programmer's Guide

4-6 OL-138634

The following properties can be set:

• Output queue size: the internal buffer size defining the maximum number of requests that can
be accumulated by the API until they are sent to the SM (the default is 1024).

Operation timeout: a hint regarding the desired timeout (in milliseconds) on a non-responding
PRPC protocol connection (the default is 45 seconds).

Syntax:

The syntax for the Non-blocking API init method is as follows:
public void init(Properties properties)

Parameters:

Following is a description of the parameters for the Non-blocking API init method:
• properties (java.util.Properties)

Enables setting the properties described above:

• To set output queue size, use prpc.client.output.machinemode.recordnum

• To set operation timeout, use prpc.client.operation.timeout

Example:

The following code shows how to customize properties during initialization when using the Non-
blocking API. Note that the init method is called before the connect method.
// API construction
SMNonBlockingAPI nbapi = SMNonBlockingAPI(10000);

// API initialization
java.util.Properties p = new java.util.Properties();
p.setProperty(“prpc.client.output.machinemode.recordnum”, 2048);
p.setProperty(“prpc.client.operation.timeout”, 60000); // 1 minute
nbapi.init(p);

// initial connect to the API to enable the reconnect task
nbapi.connect(<SM API address>);

Non-blocking API Methods
This section lists the methods of the Non-blocking API.

All methods return a handle of type Long that may be used to correlate operation calls and their
results (see the ResultHandler Interface (on page 4-3) section).

The operation results passed to the result handler are the same as the return values described in
the same method in the Blocking API ("Blocking API Methods" on page 3-3), except that:

• Basic types are converted to their Java class representation (for example, int is translated to
java.lang.Integer).

• Return values of Void are translated to NULL.

Chapter 4 Non-blocking API

Non-blocking API Methods

SCMS SM Java API Programmer's Guide

OL-138634 4-7

Note The result handler will be handed with an error if and only if the matching operation in the Blocking
API would throw an exception with the same arguments according to the SM database state at the time
of the call.

All the methods will throw a java.lang.IllegalStateException if called before a
connection with the SM is established.

The following methods are described:

• login

• logoutByName

• logoutByNameFromDomain

• logoutByMapping

• loginCable

• logoutCable

login

Syntax
public long login(String subscriberName,
 String[] mappings,
 short[] mappingTypes,
 String[] propertyKeys,
 String[] propertyValues,
 String domain,
 boolean isMappingAdditive,
 int autoLogoutTime)

The operation semantics are the same as the semantics of the matching Blocking API operation.

logoutByName

Syntax
public long logoutByName(String subscriberName,
 String[] mappings,
 short[] mappingTypes)

The operation semantics are the same as the semantics of the matching Blocking API operation.

Chapter 4 Non-blocking API

 Non-blocking API Code Examples

 SCMS SM Java API Programmer's Guide

4-8 OL-138634

logoutByNameFromDomain

Syntax
public long logoutByNameFromDomain(String subscriberName,
 String[] mappings,
 short[] mappingTypes,
 String domain)

The operation semantics are the same as the semantics of the matching Blocking API operation.

logoutByMapping

Syntax
public long logoutByMapping(String mapping,
 short mappingType,
 String domain)

The operation semantics are the same as the semantics of the matching Blocking API operation.

loginCable

Syntax
public long loginCable(String CPE,
 String CM,
 String IP,
 int lease,
 String domain,
 String[] propertyKeys,
 String[] propertyValues)

The operation semantics are the same as the semantics of the matching Blocking API operation.

logoutCable

Syntax
public long logoutCable(String CPE,
 String CM,
 String IP,
 String domain)

The operation semantics are the same as the semantics of the matching Blocking API operation.

Non-blocking API Code Examples
This section gives a code example for logging in and logging out subscribers.

Chapter 4 Non-blocking API

Non-blocking API Code Examples

SCMS SM Java API Programmer's Guide

OL-138634 4-9

Login and Logout
The following example logs in a predefined number of subscribers to the SM, and then logs them
out. Note the implementation of a disconnect listener and a result handler.

Chapter 4 Non-blocking API

 Non-blocking API Code Examples

 SCMS SM Java API Programmer's Guide

4-10 OL-138634

package nonblocking;

import com.pcube.management.framework.rpc.DisconnectListener;
import com.pcube.management.framework.rpc.ResultHandler;
import com.pcube.management.api.SMNonBlockingApi;
import com.pcube.management.api.SMApiConstants;

class LoginLogoutDisconnectListener implements DisconnectListener {
 public void connectionIsDown() {
 System.err.println("disconnect listener:: connection is down");
 }
}

class LoginLogoutResultHandler implements ResultHandler {
 int count = 0;

 //prints a success result every 100 results
 public synchronized void handleSuccess(long handle, Object result) {
 Object tmp = null;
 if (++count%100 == 0) {
 tmp = result instanceof Object[] ?
 ((Object[])result)[0] : result;
 System.out.println("\tresult "+count+":\t"+tmp);
 }

 }
 //prints every error that occurs
 public synchronized void handleError(long handle, Object result) {
 System.err.println("\terror: "+count+":\t"+ result);
 ++count;
 }

 //waits for result number 'last result' to arrive
 public synchronized void waitForLastResult(int lastResult) {
 while (count<lastResult) {
 try {
 wait(100);
 } catch (InterruptedException ie) {
 ie.printStackTrace();
 }
 }
 }
}

public class LoginLogout {
 public static void main (String args[]) throws Exception{
 //check arguments
 checkArguments(args);
 int numSubscribersToLogin = Integer.parseInt(args[2]);

 //instantiation
 SMNonBlockingApi nbapi = new SMNonBlockingApi();
 try {
 //initation
 nbapi.setDisconnectListener(
 new LoginLogoutDisconnectListener());
 nbapi.connect(args[0]);
 LoginLogoutResultHandler resultHandler =
 new LoginLogoutResultHandler();
 nbapi.setResultHandler(resultHandler);
 //login

Chapter 4 Non-blocking API

Non-blocking API Code Examples

SCMS SM Java API Programmer's Guide

OL-138634 4-11

 System.out.println("login of "+numSubscribersToLogin
 +" subscribers");
 for (int i=0; i<numSubscribersToLogin; i++) {
 nbapi.login("subscriber"+i, //subscriber name
 getMappings(i), //a single ip mapping
 new short[]{
 SMApiConstants.MAPPING_TYPE_IP
 },
 null, //no properties
 null,
 args[1], //domain
 false, //mappings are not additive
 -1); //disable auto-logout
 }
 resultHandler.waitForLastResult(numSubscribersToLogin);
 //logout
 System.out.println("logout of "+numSubscribersToLogin
 +" subscribers");
 for (int i=0; i<numSubscribersToLogin; i++) {
 nbapi.logoutByMapping(getMappings(i)[0],
 SMApiConstants.MAPPING_TYPE_IP,
 args[1]);
 }
 resultHandler.waitForLastResult(numSubscribersToLogin*2);
 } finally {
 nbapi.disconnect();
 }
 }
 static void checkArguments(String[] args) throws Exception{
 if (args.length != 3) {
 System.err.println("usage: java LoginLogout "+
 "<SM-address> <domain> <num-susbcribers>");
 System.exit(1);
 }
 }
 //'automatic' mapping generator
 private static String[] getMappings(int i) {
 return new String[]{ "10." +((int)i/65536)%256 + "." +
 ((int)(i/256))%256 + "." + (i%256)};
 }
}

SCMS SM Java API Programmer's Guide

OL-138634 A-1

Error codes are used for interpreting the actual error for which an RpcErrorException was
returned. The error code is extracted using the getErrorCode method.

The error code enumeration is given in the com.pcube.management.api.SMApiConstants
interface. A list of the error codes and their description are given in the following table.

Table A-1 List of Error Codes

Error Code Description

ERROR_CODE_BAD_SUBSCRIBER_MAPPING A mapping was formatted badly or assigned to
the subscriber illegally.

ERROR_CODE_DOMAIN_NOT_FOUND The domain provided to the operation does
not exist in the SM domain repository.

ERROR_CODE_ILLEGAL_ARGUMENT One of the arguments provided to the method
is illegal.

ERROR_CODE_ILLEGAL_SUBSCRIBER_NAME The subscriber name provided has more than
40 characters or has illegal characters.

ERROR_CODE_NOT_A_SUSBCRIBER_DOMAIN The domain provided to the operation exists in
the SM domain repository but is not a
subscriber domain.

ERROR_CODE_NUMBER_FORMAT A VLAN mapping string provided to the API
does not represent a decimal number.

ERROR_CODE_SUBSCRIBER_DOES_NOT_EXIST The subscriber on which the operation is
performed does not exist in the SM database.

ERROR_CODE_SUBSCRIBER_DOMAIN_ASSOCIA
TION

The subscriber exists in the SM database but
is associated with a domain other than the one
specified by the operation.

ERROR_CODE_SUBSCRIBER_MAPPING_CONGES
TION

The mappings provided for the subscriber by
the operation already belong to another
subscriber.

ERROR_CODE_SUSBSCRIBER_ALREADY_EXIST
S

The subscriber on which the operation was
performed already exists in the SM database.

ERROR_CODE_ARRAY_ACCESS Internal SM error.

ERROR_CODE_ATTRIBUTE_NOT_FOUND Internal SM error.

A P P E N D I X A

List of Error Codes

Appendix A Non-blocking API

 Non-blocking API Code Examples

 SCMS SM Java API Programmer's Guide

A-2 OL-138634

Error Code Description

ERROR_CODE_CLASS_CAST Internal SM error.

ERROR_CODE_CLASS_NOT_FOUND Internal SM error.

ERROR_CODE_CLIENT_INTERNAL_ERROR Internal error.

ERROR_CODE_CLIENT_OUT_OF_THREADS Internal error.

ERROR_CODE_ILLEGAL_STATE Internal SM error.

ERROR_CODE_OBJECT_NOT_FOUND Internal SM error.

ERROR_CODE_OPERATION_NOT_FOUND Internal SM error.

ERROR_CODE_OUT_OF_MEMORY Internal SM error.

ERROR_CODE_RUNTIME Internal SM error.

ERROR_CODE_NULL_POINTER Internal SM error.

ERROR_CODE_SE_ERROR Internal SM error. The SM could not perform
the operation on the SCE device.

ERROR_CODE_UNKNOWN Internal SM or API error.

SCMS SM Java API Programmer's Guide

OL-138634 1

A
Adding Subscriber, Printing Information,

Removing Subscriber • 3-27
addSubscriber • 3-13
API Construction • 2-2
API Finalization • 2-4
API Initialization • 2-2
Audience • v
Auto-reconnect Support • 4-2

B
Blocking API • 2-1, 3-1

loginCable • 3-10
logoutByMapping • 3-9
logoutByName • 3-7
logoutByNameFromDomain • 3-8
logoutCable • 3-12

Blocking API Code Examples • 3-26
Blocking API Methods • 3-3
Blocking API setup • 2-3
Blocking API/Non-blocking API • 2-1

C
Cisco TAC Website • vi
Compiling and running • 1-3
Connecting to the SM • 2-3
Constructor that accepts a LEG name • 2-2
Custom Properties • 2-6

D
Description • 3-4, 3-7, 3-8, 3-9, 3-11, 3-12,

3-13, 3-15, 3-16, 3-17, 3-18, 3-19, 3-20,
3-22, 3-23, 3-24, 3-25

DisconnectListener Interface • 2-7
Document Conventions • vi

E
Example • 3-8, 3-9, 3-10, 3-15, 3-18, 3-21
Example: • 3-13
Examples • 3-6, 3-12, 3-13, 3-15
Exceptions • 2-7
Extracting the Package • 1-2

G
General API Concepts • 2-1
getDomains • 3-24
getNumberOfSubscribers • 3-16
getNumberOfSubscribersInDomain • 3-16
getSubscriber • 3-17
getSubscriberNameByMapping • 3-19
getSubscriberNames • 3-20
getSubscriberNamesInDomain • 3-22
getSubscriberNamesWithPrefix • 3-22
getSubscriberNamesWithSuffix • 3-23
Getting Number of Subscribers • 3-26
Getting Started • 1-1

I
Installation • 1-2
Introduction • 1-1

L
List of Error Codes • A-1
login • 3-4, 4-7
Login and Logout • 4-9
loginCable • 3-10, 4-8
loginCable method

blocking API • 3-10
logoutByMapping • 3-9, 4-8
logoutByMapping method

blocking API • 3-9
logoutByName • 3-7, 4-7
logoutByName method

Index

 Index

 SCMS SM Java API Programmer's Guide

2 OL-138634

blocking API • 3-7
logoutByNameFromDomain • 3-8, 4-8
logoutByNameFromDomain method

blocking API • 3-8
logoutCable • 3-12, 4-8
logoutCable method

blocking API • 3-12

M
Multi-threading Support • 3-1, 4-2

N
Network ID Mappings • 2-4
Non-blocking API • 2-2, 4-1
Non-blocking API Code Examples • 4-8
Non-blocking API Construction • 4-4
Non-blocking API Initialization • 4-5
Non-blocking API Methods • 4-6
Non-blocking API setup • 2-3
Non-reliable Mode • 4-2

O
Opening a TAC Case • vii

P
Package Content • 1-2
Parameters • 3-5, 3-7, 3-8, 3-9, 3-11, 3-12,

3-14, 3-15, 3-17, 3-18, 3-19, 3-20, 3-21,
3-22, 3-23, 3-24, 3-25, 3-26

Platforms • 1-1
Preface • v
Purpose • v

R
Related Publications • v
Reliability Support • 4-1
Reliable Mode • 4-2
removeAllSubscribers • 3-16
removeCustomProperties • 3-25
removeSubscriber • 3-15
ReplyTimeout and OperationTimeout

Exception • 3-2
ResultHandler Interface • 4-3
Return Value • 3-6, 3-7, 3-8, 3-10, 3-11, 3-

12, 3-14, 3-15, 3-16, 3-17, 3-18, 3-19, 3-
20, 3-21, 3-22, 3-23, 3-24, 3-25, 3-26

RPC Exception Error Codes • 3-5, 3-7, 3-9,
3-10, 3-11, 3-12, 3-14, 3-15, 3-16, 3-17,
3-18, 3-19, 3-20, 3-21, 3-22, 3-23, 3-24,
3-25, 3-26

S
setPropertiesToDefault • 3-25
Setup Operations • 2-3
SM setup • 1-3
Specifying IP Address Mapping • 2-5
Specifying IP Range Mapping • 2-5
Specifying VLAN Tag Mapping • 2-5
Subscriber Domains • 2-6
Subscriber Name Format • 2-4
Subscriber Properties • 2-6
subscriberExists • 3-18
subscriberLoggedIn • 3-19
Syntax • 3-4, 3-7, 3-8, 3-9, 3-10, 3-12, 3-13,

3-15, 3-16, 3-17, 3-18, 3-19, 3-20, 3-22,
3-23, 3-24, 3-25, 4-7, 4-8

T
TAC Case Priority Definitions • vii
Technical Support • vi

	SCMS SM Java API Programmer's Guide
	Contents
	Audience
	Purpose
	Related Publications
	Document Conventions
	Technical Support
	Cisco TAC Website
	Opening a TAC Case
	TAC Case Priority Definitions

	1: Getting Started
	Introduction
	Platforms
	Installation
	Extracting the Package

	Compiling and running
	SM setup

	2: General API Concepts
	Blocking API/Non-blocking API
	Blocking API
	Non-blocking API

	API Initialization
	API Construction
	Setup Operations
	Connecting to the SM

	API Finalization
	Subscriber Name Format
	Network ID Mappings
	Specifying IP Address Mapping
	Specifying IP Range Mapping
	Specifying VLAN Tag Mapping

	Subscriber Domains
	Subscriber Properties
	Custom Properties
	DisconnectListener Interface
	Exceptions

	3: Blocking API
	Multi-threading Support
	ReplyTimeout and OperationTimeout Exception
	Blocking API Methods
	login
	logoutByName
	logoutByNameFromDomain
	logoutByMapping
	loginCable
	logoutCable
	addSubscriber
	removeSubscriber
	removeAllSubscribers
	getNumberOfSubscribers
	getNumberOfSubscribersInDomain
	getSubscriber
	subscriberExists
	subscriberLoggedIn
	getSubscriberNameByMapping
	getSubscriberNames
	getSubscriberNamesInDomain
	getSubscriberNamesWithPrefix
	getSubscriberNamesWithSuffix
	getDomains
	setPropertiesToDefault
	removeCustomProperties

	Blocking API Code Examples
	Getting Number of Subscribers
	Adding Subscriber, Printing Information, Removing Subscriber

	4: Non-blocking API
	Reliability Support
	Reliable Mode
	Non-reliable Mode

	Auto-reconnect Support
	Multi-threading Support
	ResultHandler Interface
	Non-blocking API Construction
	Non-blocking API Initialization
	Non-blocking API Methods
	login
	logoutByName
	logoutByNameFromDomain
	logoutByMapping
	loginCable
	logoutCable

	Non-blocking API Code Examples
	Login and Logout

	A: List of Error Codes
	Index

