
 
 

 

Corporate Headquarters 
Cisco Systems, Inc.  
170 West Tasman Drive 
San Jose, CA 95134-1706 
USA 
http: / /www.cisco.com 
Tel:  408 526-4000 
 800 553-NETS (6387) 
Fax: 408 526-4100 

Customer Order Number: DOC-823603= 
Text Part Number: OL-8236-03 

 

Cisco SCMS SCE Subscriber API
Programmer Guide 
Version 3.0.5 
OL-8236-03 



THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, 
INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, 
EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS. 

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED 
WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED 
WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY. 

The following information is for FCC compliance of Class A devices: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 
of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment 
generates, uses, and can radiate radio-frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. 
Operation of this equipment in a residential area is likely to cause harmful interference, in which case users will be required to correct the interference at their own expense. 

The following information is for FCC compliance of Class B devices: The equipment described in this manual generates and may radiate radio-frequency energy. If it is not installed in 
accordance with Cisco’s installation instructions, it may cause interference with radio and television reception. This equipment has been tested and found to comply with the limits for a 
Class B digital device in accordance with the specifications in part 15 of the FCC rules. These specifications are designed to provide reasonable protection against such interference in a 
residential installation. However, there is no guarantee that interference will not occur in a particular installation. 

Modifying the equipment without Cisco’s written authorization may result in the equipment no longer complying with FCC requirements for Class A or Class B digital devices. In that 
event, your right to use the equipment may be limited by FCC regulations, and you may be required to correct any interference to radio or television communications at your own 
expense. 

You can determine whether your equipment is causing interference by turning it off. If the interference stops, it was probably caused by the Cisco equipment or one of its peripheral 
devices. If the equipment causes interference to radio or television reception, try to correct the interference by using one or more of the following measures: 

• Turn the television or radio antenna until the interference stops. 

• Move the equipment to one side or the other of the television or radio. 

• Move the equipment farther away from the television or radio. 

• Plug the equipment into an outlet that is on a different circuit from the television or radio. (That is, make certain the equipment and the television or radio are on circuits controlled 
by different circuit breakers or fuses.) 

Modifications to this product not authorized by Cisco Systems, Inc. could void the FCC approval and negate your authority to operate the product. 

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB’s public domain version 
of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California. 

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH ALL 
FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF 
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE 
PRACTICE. 

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT 
LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILTY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS 
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 

CCSP, the Cisco logo, and the Cisco Square Bridge logo are trademarks of Cisco Systems, Inc; Changing the Way We Work, Live, Play, and Learn is a service mark of Cisco Systems, 
Inc.; and Access Registrar, Aironet, ASIST, BPX, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, CCSP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco 
Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Unity, Enterprise/Solver, EtherChannel, EtherFast, EtherSwitch, Fast Step, Follow Me Browsing, FormShare, 
GigaDrive, GigaStack, HomeLink, Internet Quotient, IOS, IP/TV, iQ Expertise, the iQ logo, iQ Net Readiness Scorecard, iQuick Study, LightStream, Linksys, MeetingPlace, MGX, 
Networking Academy, Network Registrar, Packet, PIX, ProConnect, RateMUX, ScriptShare, SlideCast, SMARTnet, StackWise, The Fastest Way to Increase Your Internet Quotient, and 
TransPath are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries. 

All other trademarks mentioned in this document are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any 
other company. (0609R) 

Printed in the USA on recycled paper containing 10% postconsumer waste. 

Cisco SCMS SCE Subscriber API Programmer Guide 

Copyright © 2002-2006 Cisco Systems, Inc. 
All rights reserved. 
 



 
 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  i 
 

 

Preface v 
Document Revision History v 
Audience v 
Organization vi 
Related Publications vi 
Conventions vi 
Obtaining Documentation vii 

World Wide Web vii 
Documentation CD-ROM viii 
Ordering Documentation viii 
Documentation Feedback viii 

Obtaining Technical Assistance viii 
Cisco.com ix 
Technical Assistance Center ix 

 Getting Started 1-1 
Introduction 1-1 
Platforms 1-2 
Installation 1-2 

Extracting the Package 1-2 
Compiling and Running 1-3 
Backward Compatibility with previous versions 1-4 
SCE platform setup 1-4 

PRPC Server 1-4 
Configuring the SCE in Pull Mode 1-5 
RDR Formatter Configuration 1-5 
RDR Server Configuration 1-6 
Configuring API Disconnection Timeout 1-6 

C O N T E N T S  



2.  

 Contents 
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

ii  OL-8236-03 
 

 

 Concepts and Terms 2-1 
Subscriber Characteristics 2-1 

Subscriber ID 2-1 
Anonymous Subscriber ID 2-2 
Network ID 2-2 
Policy Profile 2-2 
Quota 2-2 

Subscriber Integration Models 2-2 
Push Model 2-2 
Pull Model 2-2 

Non-blocking Model 2-3 
Indications Listeners 2-3 
Supported Topologies 2-4 
Multi-threading Support 2-6 
Auto-reconnect Support 2-6 
Reliability Support 2-6 
High Availability Support 2-6 
Synchronization 2-7 
Practical Tips 2-7 

 API Events 3-1 
Overview 3-1 

Network ID Management Events 3-2 
Policy Profile Management Events 3-4 
Quota Management Events 3-4 
SCE Synchronization Procedure Events 3-5 

 Getting Familiar with the API Data Types 4-1 
Subscriber ID 4-1 
Network ID Mappings 4-2 

Specifying IP Address Mapping 4-2 
Specifying IP Range Mapping 4-3 
Specifying VLAN Tag Mapping 4-3 
Network ID Mappings Examples 4-3 

SCA BB Subscriber Policy Profile 4-4 



6.  

Contents 
 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  iii 
 

 

PolicyProfile Class 4-4 
Subscriber Quota 4-5 

SCAS_BB_Quota 4-6 
SCAS_BB_QuotaOperation 4-7 

Bulk Operations Data Types 4-7 
Bulk Iterator 4-8 
Login_BULK Class 4-8 
SubscriberID_BULK Class 4-10 
NetworkAndSubscriberID_BULK Class 4-11 
LoginPullResponse_BULK Class 4-12 
PolicyProfile_BULK Class 4-14 
Quota_BULK Class 4-14 
QuotaOperation_BULK Class 4-15 

 Programming with the SCE Subscriber API 5-1 
API classes summary 5-1 

Package com.scms.api.sce.prpc 5-1 
Package com.scms.api.sce 5-1 
Package com.scms.common 5-2 

Programming Guidelines 5-2 
Programming with callback methods 5-2 

PRPC_SCESubscriberApi class 5-3 
API Construction 5-3 

Indications Listeners 5-7 
LoginPullListener Interface Class 5-8 
LogoutListener Interface Class 5-10 
QuotaListenerEx Interface Class 5-10 

Connection Monitoring 5-14 
ConnectionListener Interface 5-14 
Example 5-14 

Result Handling 5-15 
OperationResultHandler Interface 5-15 

Subscriber Provisioning Operations 5-19 
login operation 5-19 



2.  

 Contents 
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

iv  OL-8236-03 
 

 

loginBulk operation 5-21 
loginPullResponse operation 5-21 
loginPullResponseBulk operation 5-22 
Logout operation 5-23 
logoutBulk operation 5-24 
networkIdUpdate operation 5-24 
networkIdUpdateBulk operation 5-25 
profileUpdate operation 5-26 
profileUpdateBulk operation 5-27 
quotaUpdate operation 5-27 
quotaUpdateBulk operation 5-28 
getQuotaStatus operation 5-29 
getQuotaStatusBulk operation 5-30 

SCE-API Synchronization 5-31 
Push model synchronization procedure 5-31 
Pull Model Synchronization Procedure 5-33 

Advanced API Programming 5-35 
Implementing High Availability 5-35 

API Code Examples 5-37 
Login and Logout 5-37 
Login-pull request and login-pull response 5-41 

 Troubleshooting 6-1 
SCE Logging 6-1 

Default Log Messages 6-1 
Subscriber Operations Log messages 6-2 

API Client Logging 6-5 
API Client Log messages 6-5 

 List of Error Codes A-1 

 Index I-1 
  



 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  v 
 

 

The Cisco SCMS SCE Subscriber API is used for integrations that require direct access to the 
SCE platform for subscriber provisioning purposes. 
 

Document Revision History 
 
Cisco Service Center Release Part Number Publication Date 

Release 3.0.5 OL-8236-03 November, 2006 

Description of Changes 

• Added new section on Quota State Restore Event (on page 3-5). 

• Updated SCAS_BB_Quota (on page 4-6) class. 

• Updated the QuotaListenerEx (on page 5-10) interface due to deprecation of the 
QuotaListener interface. 

 
Cisco Service Center Release Part Number Publication Date 

Release 3.0.3 OL-8236-02 May, 2006 

Description of Changes 

• Updated API code examples. See API Code Examples (on page 5-37). 
 
Release 3.0 OL-8236-01 December, 2005 

 

Audience 
This guide is intended for the networking or computer technician responsible for integrations 
involving policy servers that perform subscriber provisioning with the SCE platform. 
 

Preface 



Preface 

 Organization 
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

vi  OL-8236-03 
 

 

Organization 
This guide covers the following topics: 
Chapter Title Description 

Chapter 1 Getting Started (on page 1-1) This chapter discusses the platforms on which 
the SCE Subscriber API can be used, and how 
to install, compile, and start running the API. 

Chapter 2 Concepts and Terms (on page 2-
1) 

This chapter describes various terms and 
concepts that are utilized when working with 
the SCMS SCE Subscriber API. 

Chapter 3 API Events (on page 3-1) This chapter describes various events accessed 
by the SCMS SCE Subscriber API. 

Chapter 4 Getting Familiar with the API 
Data Types (on page 4-1) 

This chapter describes the various API data 
types. 

Chapter 5 Programming with the SCE 
Subscriber API (on page 5-1) 

This chapter provides a detailed description of 
the API programming structure, classes, 
methods, and interfaces. 

Chapter 6 Troubleshooting (on page 6-1) This chapter describes the usage of the API 
logging abilities for troubleshooting the 
integration with the API. API logging enables 
the user to monitor the operations being called 
including the received parameters both at the 
API client and at the SCE side. 

Appendix A List of Error Codes (on page A-
1) 

This appendix lists the error codes that are 
returned by the API. 

 
 

Related Publications 
This API Guide should be used in conjunction with the following Cisco documentation: 

• Cisco SCMS Subscriber Manager User Guide 

• Cisco Service Control Application for Broadband User Guide 

• Cisco SCE 1000 or SCE 2000 User Guides 
 

Conventions 
This document uses the following conventions: 
Convention Description 

boldface font Commands and keywords are in boldface. 

italic font Arguments for which you supply values are in italics. 

[ ] Elements in square brackets are optional. 



Preface 

Obtaining Documentation 
 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  vii 
 

 

Convention Description 

{x | y | z} Alternative keywords are grouped in braces and separated by 
vertical bars. 

[x | y | z] Optional alternative keywords are grouped in brackets and separated 
by vertical bars. 

string A nonquoted set of characters. Do not use quotation marks around 
the string, or the string will include the quotation marks. 

screen font Terminal sessions and information that the system displays are in 
screen font. 

boldface screen font Information you must enter is in boldface screen font. 

italic screen font Arguments for which you supply values are in italic screen 
font. 

< > Nonprinting characters, such as passwords, are in angle brackets. 

[ ] Default responses to system prompts are in square brackets. 

!, # An exclamation point (!) or a pound sign (#) at the beginning of a 
line of code indicates a comment line. 

 

 
 

Note Means reader take note. Notes contain helpful suggestions or references to materials not covered in this 
manual. 

 

 
 

Caution Means reader be careful. In this situation, you might do something that could result in loss of data. 
  

 

Obtaining Documentation 
The following sections provide sources for obtaining documentation from Cisco Systems. 
 

World Wide Web 
You can access the most current Cisco documentation on the World Wide Web at the following 
sites: 

• http://www.cisco.com 

• http://www-china.cisco.com 

• http://www-europe.cisco.com 
 



Preface 

 Obtaining Technical Assistance 
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

viii  OL-8236-03 
 

 

Documentation CD-ROM 
Cisco documentation and additional literature are available in a CD-ROM package that ships with 
your product. The Documentation CD-ROM is updated monthly and may be more current than 
printed documentation. The CD-ROM package is available as a single unit or as an annual 
subscription. 
 

Ordering Documentation 
Cisco documentation is available in the following ways: 

• Registered Cisco Direct Customers can order Cisco Product documentation from the 
networking Products MarketPlace: 

http://www.cisco.com/cgi-bin/order/order_root.pl 

• Registered Cisco.com users can order the Documentation CD-ROM through the online 
Subscription Store: 

http://www.cisco.com/pcgi-bin/marketplace/welcome.pl 

• Nonregistered Cisco.com users can order documentation through a local account 
representative by calling Cisco corporate headquarters (California, USA) at 408 526-7208 or, 
in North America, by calling 800 553-NETS(6387). 

 

Documentation Feedback 
If you are reading Cisco product documentation on the World Wide Web, you can submit 
technical comments electronically. Click Feedback in the toolbar and select Documentation. 
After you complete the form, click Submit to send it to Cisco. 

You can e-mail your comments to bug-doc@cisco.com. 

To submit your comments by mail, use the response card behind the front cover of your 
document, or write to the following address: 

Attn Document Resource Connection 
Cisco Systems, Inc. 
170 West Tasman Drive 
San Jose, CA 95134-9883 

We appreciate your comments. 
 

Obtaining Technical Assistance 
Cisco provides Cisco.com (on page ix) as a starting point for all technical assistance. Customers 
and partners can obtain documentation, troubleshooting tips, and sample configurations from 
online tools. For Cisco.com registered users, additional troubleshooting tools are available from 
the TAC website. 
 



Preface 

Obtaining Technical Assistance 
 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  ix 
 

 

Cisco.com 
Cisco.com is the foundation of a suite of interactive, networked services that provides immediate, 
open access to Cisco information and resources at any time, from anywhere in the world. This 
highly integrated Internet application is a powerful, easy-to-use tool for doing business with 
Cisco. 

Cisco.com provides a broad range of features and services to help customers and partners 
streamline business processes and improve productivity. Through Cisco.com, you can find 
information about Cisco and our networking solutions, services, and programs. In addition, you 
can resolve technical issues with online technical support, download and test software packages, 
and order Cisco learning materials and merchandise. Valuable online skill assessment, training, 
and certification programs are also available. 

Customers and partners can self-register on Cisco.com to obtain additional personalized 
information and services. Registered users can order products, check on the status of an order, 
access technical support, and view benefits specific to their relationships with Cisco. 

To access Cisco.com, go to http://www.cisco.com. 
 

Technical Assistance Center 
The Cisco Technical Assistance Center (TAC) website is available to all customers who need 
technical assistance with a Cisco product or technology that is under warranty or covered by a 
maintenance contract. 
 

Contacting TAC by Using the Cisco TAC Website 
If you have a priority level 3 (P3) or priority level 4 (P4) problem, contact TAC by going to the 
TAC website http://www.cisco.com/tac. 

P3 and P4 level problems are defined as follows: 

• P3—Your network is degraded. Network functionality is noticeably impaired, but most 
business operations continue. 

• P4—You need information or assistance on Cisco product capabilities, product installation, or 
basic product configuration. 

In each of the above cases, use the Cisco TAC website to quickly find answers to your questions. 

To register for Cisco.com (on page ix), go to http://tools.cisco.com/RPF/register/register.do. 

If you cannot resolve your technical issue by using the TAC online resources, Cisco.com 
registered users can open a case online by using the TAC Case Open tool at 
http://www.cisco.com/tac/caseopen. 
 



Preface 

 Obtaining Technical Assistance 
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

x  OL-8236-03 
 

 

Contacting TAC by Telephone 
If you have a priority level 1 (P1) or priority level 2 (P2) problem, contact TAC by telephone and 
immediately open a case. To obtain a directory of toll-free numbers for your country, go to 
http://www.cisco.com/warp/public/687/Directory/DirTAC.shtml. 

P1 and P2 level problems are defined as follows: 

• P1—Your production network is down, causing a critical impact to business operations if 
service is not restored quickly. No workaround is available. 

• P2—Your production network is severely degraded, affecting significant aspects of your 
business operations. No workaround is available. 

 

 

 

 

 

Disclaimer: The code in this document can be used as a guideline for your site installation. 
However, any code that has been implemented using this document is not supported by TAC. 

 



 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  1-1 
 

 

This chapter discusses the platforms on which the SCE Subscriber API can be used, and how to 
install, compile, and start running it. 

 

This chapter contains the following sections: 

• Introduction 1-1 

• Platforms 1-2 

• Installation 1-2 

• Compiling and Running 1-3 

• Backward Compatibility with previous versions 1-4 

• SCE platform setup 1-4 
 
 

Introduction 
The SCMS SCE Subscriber API provides the ability to external applications (policy servers) to 
connect directly to the SCE for the purpose of subscriber provisioning. 

Subscriber provisioning is a process of updating the Network IDs, Policy Profile and Quota 
characteristics of the subscriber using the Subscriber ID as the correlation. For more information 
about the characteristics of the subscriber in the Service Control Application for Broadband (SCA 
BB), see the Subscriber Characteristics (on page 2-1) section. 

The API can be installed and used concurrently on several policy servers and each of them can 
perform different parts of the subscriber provisioning process as shown in the following diagram: 

 

C H A P T E R  1  

Getting Started 



Chapter 1      Getting Started 

 Platforms 
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

1-2  OL-8236-03 
 

 

The API uses the PRPC (Proprietary Remote Procedure Call) protocol as a transport for the 
connection to the SCE. The PRPC is a proprietary RPC protocol designed by Cisco. 

 

  

Note The API provides a connection to one SCE platform for each API instance 

 
 

Platforms 
The SCMS SCE Subscriber API is operable on any platform that supports Java version 1.4. 

 
 

Installation 
Extracting the Package 

The SCMS SCE Subscriber API distribution is part of the SCMS SM-LEG distribution file and is 
located in the sce_api directory. 

The SCMS SCE Subscriber API is packaged in a UNIX tar file. You can extract the SCMS SCE 
Subscriber API using the UNIX tar utility or most Windows compression utilities. 

To install the distribution on a UNIX platform: 

 

Step 1 Extract the SCMS SM-LEG distribution file and locate the SCE Subscriber API distribution tar 
sce-java-api-dist.tar.gz 

Step 2 Unzip the distribution file: 
#> gunzip sce-java-api-dist.tar.gz 

Step 3 Extract the SCE Subscriber API package tar:  
#> tar -xvf sce-java-api-dist.tar 

 

To install the distribution on a Windows platform: 

 

 Use a zip extractor (such as WinZip). 

 
 



Chapter 1      Getting Started 

Compiling and Running 
 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  1-3 
 

 

Package Content 
For brevity, the installation directory sce-java-api-_<version>_<build-number> is 
referred to as <installdir>. 

The <installdir>/javadoc folder contains the SCE Subscriber API JAVADOC documentation. 

The <installdir>/lib folder contains the sceapi.jar file, which is the API Executable. It 
also contains additional jar files necessary for the API operation. 

Table  1-1 Layout of Installation Directory 

Path Name Description 

<installdir>   

 README API readme  file 

<installdir>/Javadoc   

 index.html Index of all API specifications 

 (API specification files, etc.)  API specification documents 

<installdir>/Lib   

 sceapi.jar SCE Subscriber API executable 

 asn1rt.jar Utility jar used by the API 

 log4j.jar Utility jar used by the API 

 log4j.properties Property file needed for the logging 
functionalities 

 jdmkrt.jar Utility jar used by the API 
 

Compiling and Running 
To compile and run a program that uses the SCMS SCE Subscriber API, the following files must 
be in CLASSPATH: 
• sceapi.jar 
• asn1rt.jar 
• log4j.jar 

• log4j.properties—For more information about the file format, see the API Client 
Logging (on page 6-5) section. 

• jdmkrt.jar 



Chapter 1      Getting Started 

 Backward Compatibility with previous versions 
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

1-4  OL-8236-03 
 

 

The SCE Subscriber API provides internal logging interface using the log4j logging 
functionalities. In order to function correctly log4j.jar and log4j.properties must 
be in a CLASSPATH when running a program. 

For example, if the program source is in SCEApiProgram.java, use the following command-
line to compile: 
#> javac -classpath sceapi.jar SCEApiProgram.java 

Afterward, use the following command-line to run the program: 
#> java -cp .;<installdir>/lib/asn1rt.jar; 
<installdir>/lib/log4j.jar;<installdir/log4j.properties>;<install
dir>/lib/sceapi.jar SCEApiProgram 
 

Backward Compatibility with previous versions 
Version 3.0.5 of the API is backward compatible with previous versions, but is not binary-
compatible. You must recompile applications that use a previous version of the API in order to use 
the new version. Since the API is backward compatible, you do not need to make any changes to 
the application source code. 

 

 
 

Note If you upgrade the SCE to version 3.0.5, you must upgrade the API to version 3.0.5 and recompile the 
application that uses it. 

 

SCE platform setup 
The following sections describe the configuration that is performed on the SCE platform to allow 
correct API functioning. 
 

PRPC Server 
The API connects to the PRPC server on the SCE platform. The PRPC server is a server running a 
proprietary RPC protocol designed by Cisco. For more information, see the SCE User Guide. 

Before using the API, ensure that: 

• The SCE must be up and running, and reachable from the machine that hosts the API. 

• The PRPC server on the SCE must be started. 
 



Chapter 1      Getting Started 

SCE platform setup 
 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  1-5 
 

 

Configuring the SCE in Pull Mode 
To enable the SCE platform to issue a request for subscriber information when running in a Pull 
Model (see Pull Model (on page 2-2)), configure the following using the SCE platform 
Command-Line Interface (CLI): 

To configure the SCE in Pull Model: 

 

Step 1 Configure the subscriber templates (optional): 

(config if)#>subscriber template import <CSV file> 

For more information about the templates and the format of the CSV file, see the Cisco Service 
Control Application for Broadband User Guide. 

Step 2 Configure the unmapped-subscriber groups ranges. 

a) Use the following CLI to import anonymous groups from a file: 
(config if)#>subscriber anonymous group import <CSV file> 

b) Alternatively, use the following CLI to manually define the anonymous group: 
(config if)#>subscriber anonymous group name <NAME> IP-range 
<IP RANGE> 

 

For more information about configuring the SCE platform, see the SCE 1000 or SCE 2000 User 
Guides. 
 

RDR Formatter Configuration 
To enable the RDR formatter to issue quota-related indications, configure the RDR formatter on 
the SCE platform as follows: 
#>RDR-formatter destination 127.0.0.1 port 33001 category number 
4 priority 100 

By default, Quota RDRs tags are mapped to category 4. If another category is required, use the 
following CLI command: 
#>RDR-formatter rdr-mapping add tag-ID <tag number> category-
number <number> 

 

 
 

Note For Quota RDR tag IDs, see the Cisco Service Control Application for Broadband User Guide.  
 

 
 

Note To enable the application to issue quota-related indications, it should be enabled in the Cisco Service 
Control Application for Broadband GUI. See the Cisco Service Control Application for Broadband User 
Guide for configuration description. 



Chapter 1      Getting Started 

 SCE platform setup 
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

1-6  OL-8236-03 
 

 

 
 

RDR Server Configuration 
To enable the API to receive Quota indications, the RDR server should be enabled and listening 
on the same port that is configured in the RDR formatter. To verify the RDR server configuration, 
use the following CLI: 
#>show RDR-server 

RDR server is ONLINE 

RDR server port is 33001 

Use the following CLI to enable the RDR server: 
#>configure 

(config)#>RDR-server 

Default RDR server port is 33001 

Use the following CLI to change the RDR server port: 
#>configure 

(config)#>RDR-server port <port> 
 

Configuring API Disconnection Timeout 
The SCE platform allows setting the timeout for the API to reconnect to the SCE platform after it 
was disconnected. During this timeout, the SCE will not free the resources and no data will be 
lost. After the timeout has elapsed and the API did not reconnect, the SCE considers the API 
disconnected and frees all the resources. The default timeout value is 5 minutes. 

Use the following CLI command to configure the timeout: 
(config)# management-agent sce-api timeout <timeout-in-sec> 

Use the following CLI command to reset the timeout to the default value: 
(config)# default management-agent sce-api timeout 

Use the following CLI command to view the timeout value: 
# show management-agent sce-api 
 



 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  2-1 
 

 

This chapter describes various terms and concepts that are utilized when working with the SCMS 
SCE Subscriber API. 

 

This chapter contains the following sections: 

• Subscriber Characteristics 2-1 

• Subscriber Integration Models 2-2 

• Non-blocking Model 2-3 

• Indications Listeners 2-3 

• Supported Topologies 2-4 

• Multi-threading Support 2-6 

• Auto-reconnect Support 2-6 

• Reliability Support 2-6 

• High Availability Support 2-6 

• Synchronization 2-7 

• Practical Tips 2-7 
 
 

Subscriber Characteristics 
One of the fundamental entities in the Service Control Application for Broadband (SCA BB) 
solution is a subscriber. A subscriber is the entity that the SCA BB solution individually monitors, 
accounts, and enforces a service configuration. The following sections briefly describe the 
characteristics of the subscriber in the SCA BB. For more information about the format and usage 
of the subscriber's characteristics, see the Getting Familiar with the API Data Types (on page 4-1) 
section. 
 

Subscriber ID 
Subscriber ID is a subscriber unique identifier, for example, a user name, IMSI (International 
Mobile Subscriber Identity), or other codes that uniquely identify a subscriber. 
 

C H A P T E R  2  

Concepts and Terms 



Chapter 2      Concepts and Terms 

 Subscriber Integration Models 
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

2-2  OL-8236-03 
 

 

Anonymous Subscriber ID 
When working in the Pull Model integration, the SCE assigns each unknown subscriber IP 
address with a temporary Subscriber ID, Anonymous Subscriber ID, until it receives the real 
Subscriber ID from the Policy Server. 

For more information on the Pull Model integration, see the Subscriber Integration Models (on 
page 2-2) section. 
 

Network ID 
The SCE correlates a certain traffic flow to a subscriber by mapping a network identifier, for 
example, IP address, IP range, or VLAN, to the subscriber entity. 
 

Policy Profile 
A Policy Profile includes a set of parameters used by the SCA BB solution to define what policy 
is enforced on the subscriber. 
 

Quota 
A quota includes the quota-bucket values of the service quota or quotas available for the usage of 
the subscriber. 
 

Subscriber Integration Models 
The following terms describe two models of a dynamic subscriber integration that the SCE 
platform supports. 
 

Push Model 
In push model integration, an external server introduces (pushes) the subscribers to the SCE 
platform. This is performed whenever a new subscriber logs in to the network or the external 
server presumes to know all subscribers and introduces them to the SCE box when they connect. 

 
 

Pull Model 
In pull model integration, the SCE platform requests subscriber data from the external entity 
when it encounters traffic of an unknown subscriber, known as an anonymous subscriber. The 
external entity retrieves the required subscriber information and sends it back to the SCE 
platform. 

 
 



Chapter 2      Concepts and Terms 

Non-blocking Model 
 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  2-3 
 

 

Non-blocking Model 
The SCE Subscriber API is implemented using a non-blocking model. Non-blocking methods 
return immediately, even before the completion of a subscriber provisioning operation. The Non-
blocking Model method is advantageous when the operation is lengthy and involves I/O. 
Performing the operation in a separate thread allows the caller to continue doing other tasks and it 
improves overall system performance. 

The operation results are either returned to an Observer object (Listener) or may not be returned at 
all. 

The API supports retrieval of operation results using an operation result handler described in the 
Result Handling (on page 5-15) section. 

The following diagram illustrates the Non-blocking Model method during a subscriber 
provisioning operation:  

 
Operation results can be used for operation result error logging or for inspection of the parameters 
used by the operation. 

 
 

Indications Listeners 
The API provides the user with the ability to receive an indication when certain events occur on 
the SCE platform. The API dispatches the indications received from the SCE to the interested 
entities, called listeners, by activating the relevant Listener's callback methods. The indications 
are separated into several logical groups when only one listener can be defined for each group of 
indications. 

 
To receive certain indications, you need to register a listener to the API that implements the 
required callback functions. After the listener is registered, the API can dispatch the required 
indications to the listener. The SCMS SCE Subscriber API provides three types of indications 
when separate listeners are registered to the following types of the indications: 

• Login-pull indications 

• Logout indications 



Chapter 2      Concepts and Terms 

 Supported Topologies 
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

2-4  OL-8236-03 
 

 

• Quota indications 

For more information about listener indications, see the API Events (on page 3-1) chapter. 
 

Supported Topologies 
The following topologies are recommended to use with the SCMS SCE Subscriber API: 

• One policy server (or two-node cluster) that is responsible for all aspects of the  subscriber 
provisioning process: 

 
• Three policy servers (or three two-node clusters)—Every server is responsible for a different 

aspect of the subscriber provisioning process: 

 
• Two policy servers (or two two-node clusters) when one of the servers is responsible for two 

aspects of the subscriber provisioning and the other server is responsible for one aspect only 
(any combination is allowed). For example: 

 



Chapter 2      Concepts and Terms 

Supported Topologies 
 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  2-5 
 

 

• DHCP Lease Query LEG, which is responsible for mapping a Network ID to a Subscriber ID, 
with one or more policy servers as described in the three policy server diagram above. The 
following diagram shows the DHCP Lease Query LEG: 

 
• SCMS SM, which is responsible for mapping Network ID to Subscriber ID, with one or more 

policy servers. The number of policy servers depends on whether the SM is used for policy 
profile provisioning in addition to the network ID: 

   

 
 

Note The API itself does not limit the use of any topology; however, the SCE platform does not correlate 
between all the entries (Policy Servers) that perform subscriber provisioning. Therefore you should be 
extremely careful when using more than one Policy Server for the same provisioning purpose (for 
example Network ID/Subscriber ID correlation). If you are not careful when using more than one 
Policy Server, the SCE platform may receive different information for the same subscriber from the two 
policy servers responsible for the same aspect of the subscriber provisioning. This may cause a loss of 
synchronization with at least one policy server. For example, using two policy servers that are 
responsible for providing Subscriber ID/Network ID correlation for the same subscriber will produce 
the situation where the SCE is always synchronized with the policy server that performed the last 
update for this subscriber.  

 



Chapter 2      Concepts and Terms 

 Multi-threading Support 
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

2-6  OL-8236-03 
 

 

Multi-threading Support 
The API supports an unlimited number (limited by the available memory) of threads calling its 
methods simultaneously. 

 

 
 

Note  In a multi-threaded scenario, the order of invocation is guaranteed: the API performs operations in the 
same chronological order that they were called. 

 
 

Auto-reconnect Support 
The API supports auto-reconnection to the SCE in case of connection failure. When this option is 
activated, the API can determine when the connection to the SCE is lost. When the connection is 
lost, the API activates a reconnection task that tries to reconnect to the SCE again in a 
configurable interval time until reconnection is successful. 
 

Reliability Support 
The SCMS SCE Subscriber API is implemented as a reliable API. The API ensures that no 
requests to the SCE are lost and no indication from the SCE is lost. The API maintains an internal 
storage for all API requests that were sent to the SCE. Only after receiving an acknowledgement 
from the SCE that the request was handled, it considers the request as committed and the API can 
remove the request from its internal storage. If a connection failure occurs between the API and 
the SCE, the API accumulates all requests in its internal storage until the connection to the SCE is 
reestablished. On reconnection, the API resends all non-committed requests to the SCE, ensuring 
that no requests are lost. 

 

 
 

Note The order of resending requests is guaranteed: the API resends the requests in the same chronological 
order that they were called. 

 
 

High Availability Support 
The API provides high availability support. It assumes that the high availability scheme of the 
policy server is a two-node cluster type where only one server is active at any given time. The 
other server, in standby, is not connected to the SCE. For more information, see the Implementing 
High Availability (on page 5-35) section. 
 



Chapter 2      Concepts and Terms 

Synchronization 
 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  2-7 
 

 

Synchronization 
The SCE and Policy Server must be kept synchronized concerning the subscribers for which the 
SCE is handling their internal parameters. Otherwise, the SCE might confuse one of the 
subscriber's traffic to another subscriber, or the subscriber's SLA (Service Level Agreement) will 
not be enforced because of a change in the policy that did not reach the SCE. For more 
information read SCE-API Synchronization (on page 5-31) section. 

 
 

Practical Tips 
When implementing the code that integrates the API with your application you should consider 
the following practical tips: 

• Connect once to the SCE and maintain an open API connection to the SCE at all times, using 
the API many times. Establishing a connection is a timely procedure, which allocates 
resources on the SCE side and the API client side. 

• Share the API connection between your threads - it is better to have one connection per Policy 
Server. Multiple connections require more resources on the SCE and client side. 

• Do not implement synchronization of the calls to the API. The client automatically 
synchronizes calls to the API. 

• If the Policy Server application has bursts of logon operations, enlarge the internal buffer size 
accordingly to hold these bursts (Non-Blocking flavor). 

• During the integration, use the logging capabilities that are described in the SCE Logging (on 
page 6-1) and the API Client Logging (on page 6-5) sections in the Troubleshooting (on page 
6-1)  chapter to view the API operations in the SCE's client logs and to troubleshoot problems 
during the integration, if any. 

• Use the debug mode for the Policy Server application that logs/prints the return values of the 
operations. 

• Use the automatic reconnect feature to improve the resiliency of the connection to the SCE. 
 





 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  3-1 
 

 

This chapter describes various events accessed by the SCMS SCE Subscriber API. 

This chapter contains the following sections: 

• Overview 3-1 
 
 

Overview 
The API accesses a set of events that are a pre-defined set of messages passed back and forth 
between the Policy Server and the SCE platform: 

 
Every message can be assigned a type according to the purpose of the message: 

• Request—Requests information or an action to be performed. A request is not necessarily 
followed by a response. 

• Response—Answers a previous request 

• Indication—Indicates the other side that an event has occurred 

Most of the events may be used for both push and pull models. See the Subscriber Integration 
Models (on page 2-2) section. 

The events may be divided into the following Subscriber Provisioning process groups: 

• Network ID management events—Includes events relating to the modification of the 
subscriber Network ID mapping 

• Policy Profile management events—Includes events relating to modification of the subscriber 
Policy Profile parameters 

• Quota management events—Includes events relating to the management of subscriber quota 

• SCE Synchronization management events—Includes events relating to the management of the 
SCE synchronization process 

C H A P T E R  3  

API Events 



Chapter 3      API Events 

 Overview 
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

3-2  OL-8236-03 
 

 

You can perform bulk operations, which bundle many triggers for the same event on many 
subscribers to one global event. 

The following sections provide a general description of each type of event. 
 

Network ID Management Events 

Login Events 
Login events occur when the subscriber connects to the network and vary for pull and push 
models. 
 

Push Model 
The push integration model assumes that the Policy Server triggers the subscriber introduction to 
the SCE. For example, the server receives a subscriber login indication from an external entity 
such as AAA (Authorization, Authentication, and Accounting), extracts the required subscriber 
attributes, and "pushes" the information to the SCE platform: 

 
The subscriber login operation may either cause the creation of a new subscriber record in the 
SCE or update an existing subscriber. For example, for cable modem networks the subscriber is a 
cable modem and the CPEs connected to this cable modem are configured as a list of IP addresses 
(potentially ranges). In this case, the login of the new CPE connected to the same modem causes 
the CPE IP address to be added to the subscriber's Network ID list. 
 

Pull Model 
The pull integration model assumes that the SCE discovers a new subscriber from the incoming 
data traffic. The new subscriber is entered in the system as an anonymous subscriber and is 
assigned one of the default policies. The SCE initiates a request to the external system (a login-
pull request) that may either provide the subscriber login information (a login-pull reply) or is 
omitted if no information exists for this IP. The login information provided to the SCE replaces 
the anonymous subscriber with the actual subscriber and enforces the correct policy. 

If the external system rejects the login and the traffic keeps coming from the anonymous 
subscriber, the pull request will be retried. 

 



Chapter 3      API Events 

Overview 
 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  3-3 
 

 

  

 
 

Note Despite being classified as “Network-ID Management Event”, LOGIN-REQUEST event and LOGIN-
PULL-RESPONSE event are optimized to allow sending all subscriber information to the SCE. It is 
recommended to use these events for Policy Profile and Quota updates when a single Policy Server 
performs all parts of the subscriber provisioning. For multiple Policy Servers topologies, use separate 
events for updating Policy Profile and Quota information described in the following sections. For more 
information about topologies, see the Supported Topologies (on page 2-4) section. 

 
 

Logout Events 
The logout event indicates that the subscriber no longer uses a certain network ID. A logout event 
is not necessarily followed by the removal of the subscriber record from the SCE. For example, in 
cable modem networks, when there are more than one CPE connected to the same modem, the 
logout of one CPE may not lead to the removal of a subscriber if another CPE remains connected. 
The actual removal of the subscriber occurs when all of the CPEs (Subscriber's network-IDs) are 
disconnected. 

 
The logout event in the pull model may occur, for example, when the SCE identifies that the 
subscriber is not active for a specific time interval. The SCE “logs out” the subscriber and sends a 
LOGOUT-INDICATION event. 

 
The LOGOUT-INDICATION event may also follow the Logout operation. This occurs once a 
subscriber is actually removed; for example, when no more valid network mappings (IP) are 
associated with this subscriber. 

 
 

Network ID Update Event 
This event is a REQUEST from the Policy Server to the SCE to update the network ID of the 
subscriber that already exists in the SCE platform. This event does not require any RESPONSE. 

 
 



Chapter 3      API Events 

 Overview 
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

3-4  OL-8236-03 
 

 

Policy Profile Management Events 

Profile Update Event 
This event is a REQUEST from the Policy Server to the SCE to update the policy profile of the 
subscriber that already exists in the SCE platform. This event does not require any RESPONSE. 

  

 
 

Note As described above, the LOGIN-REQUEST event and LOGIN-PULL-RESPONSE event can also 
update the policy profile. 

 

Quota Management Events 

Quota Update Event 
The Quota Update Event is a REQUEST from the Policy Server to the SCE to update the quota of 
the subscriber that already exists in the SCE platform. This event does not require any 
RESPONSE event. 

  

 
 

Note As described above, the LOGIN-REQUEST event and LOGIN-PULL-RESPONSE event can also 
update the quota. 

 

Get Quota Status Event 
The Get Quota Status Event is a REQUEST from the Policy Server to the SCE to report the quota 
information of the subscriber that already exists in the SCE platform. A QUOTA-STATUS-
INDICATION event follows this event. 

  

 
 

Note A QUOTA-STATUS-INDICATION event may be issued periodically by the SCE without a specific 
request from the Policy Server. See the next section. 

 



Chapter 3      API Events 

Overview 
 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  3-5 
 

 

Quota Status Event 
The SCE uses the Quota Status INDICATION event to notify the Policy Server about the 
remaining quota. This event is invoked periodically in a preconfigured time interval. 

 
 

Quota Below Threshold Event 
The SCE uses the Quota Below Threshold INDICATION event to notify the Policy Server that the 
remaining quota for certain services of the specific subscriber is below the preconfigured 
threshold. An UPDATE-QUOTA-REQUEST event from the Policy Server to the SCE may follow 
this event, but it is not mandatory. 

 
 

Quota Depleted Event 
The SCE uses the Quota Depleted INDICATION event to notify the Policy Server that the quota 
for certain services of the specific subscriber is depleted. An UPDATE-QUOTA-REQUEST event 
from the Policy Server to the SCE may follow this event. 

 
 

Quota State Restore Event 
The Quota State Restore Event is an INDICATION from the SCE to the Policy Server to restore 
the quota of the subscriber that exists in the SCE platform. This event is invoked immediately 
after a subscriber is logged in to the SCE. A Quota Update event from the Policy Server may 
follow this event. 

 
 

SCE Synchronization Procedure Events 

Start Synchronization Event 
The Start Synchronization REQUEST event is used to notify the SCE that the synchronization 
process is about to start. The SCE uses this REQUEST to perform internal operations that are 
required for synchronization process preparation. This event has a push and a pull component. 

 
 



Chapter 3      API Events 

 Overview 
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

3-6  OL-8236-03 
 

 

End Synchronization Event 
The End Synchronization REQUEST event is used to notify the SCE that the synchronization 
process has ended. This event has a push and a pull component. 

 
 

Get Subscribers Events 
During the SCE's Pull Model synchronization process, the Policy Server is required to retrieve 
ALL subscribers that the SCE is currently handling. The GET-SUBSCRIBERS-BULK-
REQUEST event is a request from the Policy Server to the SCE to retrieve the next bulk of 
subscribers that the SCE is currently handling. Upon receiving this request, the SCE responds 
with the GET-SUBSCRIBERS-BULKRESPONSE event that supplies the subscriber names and 
Network-IDs. 

 
For more information, see the Pull Model (on page 2-2) section and the Pull Model 
Synchronization Procedure (on page 5-33) section.  
 



 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  4-1 
 

 

This chapter describes the various API data types used in the SCMS SCE Subscriber API. 

This chapter contains the following sections: 

• Subscriber ID 4-1 

• Network ID Mappings 4-2 

• SCA BB Subscriber Policy Profile 4-4 

• Subscriber Quota 4-5 

• Bulk Operations Data Types 4-7 
 
 

Subscriber ID 
Most methods of the SCE Subscriber APIs require the subscriber ID to be used as an input 
parameter. The Subscriber ID is a string representing a subscriber name or a CM MAC address. 
This section lists the formatting rules of a subscriber ID. 

The subscriber name is case-sensitive. It may contain up to 40 characters. The following 
characters may be used: 
Alphanumerics $ (dollar sign) . (period or dot) _ (underscore) 

- (minus sign or hyphen) % (percent sign) / (slash) ~ (tilde) 

! (exclamation mark) & (ampersand) : (colon) ' (apostrophe) 

# (number sign) () (parentheses) @ (at sign)  

For example: 
 

String subID1=”john”; 
String subID2=”john@yahoo.com”; 

 

C H A P T E R  4  

Getting Familiar with the API Data Types 



Chapter 4      Getting Familiar with the API Data Types 

 Network ID Mappings 
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

4-2  OL-8236-03 
 

 

Network ID Mappings 
A network ID is a network identifier that the SCE device relates to a specific subscriber record. A 
typical example of a network ID mapping is an IP address. Currently, the Cisco Service Control 
Engine (SCE) supports IP address, IP range, and VLAN types of mappings. 

The NetworkID class represents various types of subscriber network identification. 

The API supports the following subscriber mapping types: 

• IP addresses or IP ranges 

• VLAN tags 
 

 
 

Note  Mixing IP addresses/IP ranges with VLAN tags for the same subscriber is not supported. 
 

When using subscriber operations that involve network ID, the caller is requested to provide a 
NetworkID parameter. 

NetworkID class constructors are defined as follows: 
 

public NetworkID(String mapping,short mappingType) throws Exception 
public NetworkID(String[] mappings,short[] mappingTypes) throws Exception 

Parameters of the NetworkID constructors are: 

• a java.lang.String mapping identifier or array of mapping identifiers 

• a short mapping type or array of mapping types 

When passing arrays, the mappingTypes array must contain either the same number of elements 
as the mappings array, or a single element. 

• Use NetworkID.TYPE_IP or NetworkID.TYPE_VLAN constants if the array contains more 
than one element 

• Use NetworkID. ALL_IP_MAPPINGS or NetworkID.ALL_VLAN_MAPPINGS constants 
when a single array element is used 

 

Specifying IP Address Mapping 
The string format of an IP address is the commonly used decimal notation: 
IP-Address=[0-255].[0-255].[0-255].[0-255] 

Example: 
• 216.109.118.66 

The mapping type of an IP address is provided in the class NetworkID: 

com.scms.common.NetworkID.TYPE_IP: 

com.scms.common.NetworkID.ALL_IP_MAPPINGS specifies that all the entries in the 
mapping identifiers array are IP mappings. 

 



Chapter 4      Getting Familiar with the API Data Types 

Network ID Mappings 
 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  4-3 
 

 

Specifying IP Range Mapping 
The string format of an IP range is an IP address in decimal notation and a decimal specifying the 
number of 1s in a bit mask: IP-Range=[0-255].[0-255].[0-255].[0-255]/[0-32]. 

Examples: 

• 10.1.1.10/32 is an IP range with a full mask, that is, a regular IP address. 

• 10.1.1.0/24 is an IP range with a 24-bit mask, that is, all of the addresses ranging between 
10.1.1.0 and 10.1.1.255. 

 

 
 

Note  The mapping type of an IP Range is identical to the mapping type of the IP address. 
 

 

Specifying VLAN Tag Mapping 
The string format for VLAN tag mapping is a decimal number in the following range: [2-2046] 

The com.scms.common.NetworkID class provides the VLAN mapping type: 

• The mapping type of an IP address is provided in the class NetworkID: 

com.scms.common.NetworkID.TYPE_VLAN: 

• com.scms.common.NetworkID.ALL_VLAN_MAPPINGS specifies that all the entries in the 
mapping identifiers array are VLAN mappings. 

 

Network ID Mappings Examples 
Construct NetworkID with a single IP address: 

 
NetworkID nid = new NetworkID(“1.1.1.1”,NetworkID.TYPE_IP) 

Construct NetworkID with a range of IP addresses: 
 

NetworkID nid = new NetworkID(“1.1.1.1/24”,NetworkID.TYPE_IP) 

Construct NetworkID with multiple IP addresses: 
 

NetworkID nid = new NetworkID(new String[]{“1.1.1.1”,”2.2.2.2”,”3.3.3.3”}, 
            NetworkID.ALL_IP_MAPPINGS) 

Construct NetworkID with a single VLAN address: 
 

NetworkID nid = new NetworkID(“23”,NetworkID.TYPE_VLAN) 
 



Chapter 4      Getting Familiar with the API Data Types 

 SCA BB Subscriber Policy Profile 
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

4-4  OL-8236-03 
 

 

SCA BB Subscriber Policy Profile 
The Policy Profile describes the subscriber policy information. A policy profile is generally 
comprised of two main parts including a statically defined policy that is identified by the policy 
package and a set of subscriber policy properties that might have a dynamic nature. The package 
ID identifies the policy package. Most of the rules enforced on the subscriber traffic are derived 
from the package ID. 

Subscriber policy property in the SCA BB is a key-value pair that affects the way the SCE 
analyzes and reacts to network traffic generated by the subscriber. 

More information about properties can be found in the Cisco Service Control Application Suite for 
Broadband User Guide.  

SCA BB version 3.0 contains the following properties: 

• packageId—Defines the package ID of the subscriber 

• monitor—Indicates whether to issue an Raw Data Record (RDR) for each transaction of this 
subscriber 

 

PolicyProfile Class 
The API provides a PolicyProfile class to format subscriber policy profiles required for the API 
operations. 

The following method constructs the PolicyProfile class based on the array of policy properties: 
 

public PolicyProfile(String[] policy) 
  

 
 

Note The encoding of each string within the array must be as follows: 
“property_name=property_value”. 

  
The following method allows adding a policy property to the profile according to the format 
described above: 

 
public void addPolicyProperty(String policyProperty) 

 

 
 

Note This method is not optimized for performance. For best performance results, use the PolicyProfile 
constructor. 

EXAMPLE:  
PolicyProfile pp = new PolicyProfile(new String[]{"packageId=22", 
                                                  "monitor=1"}) 

 



Chapter 4      Getting Familiar with the API Data Types 

Subscriber Quota 
 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  4-5 
 

 

Subscriber Quota 
The quota provisioning in SCA BB is prepared using subscriber quota buckets. Each subscriber 
has 16 buckets, and you can define each bucket for volume or sessions. When a subscriber uses a 
particular service, the amount of consumed volume or number of sessions is subtracted from one 
of the buckets. The service configuration, which is defined in the general policy definition by 
using the SCA BB GUI, determines which bucket to use for each service. Consumption for the 
volume buckets is counted in units of L3 kilobytes and consumption for the session buckets is the 
number of sessions. For example, it is possible to define that the Browsing and E-mail services 
consume quota from Bucket #1, P2P service consumes quota from Bucket #2, and that all other 
services are not bound to any particular bucket. 

Quota bucket comprises from the following components: 

• Bucket ID—Unique identifier of the bucket (String) as defined in the predefined policy. 
Valid values are numbers in range  [1-16] 

• Bucket value—Quota bucket value (long) 

Quota Operation dynamically modifies a subscriber's quota buckets. There are two types of quota 
operations: 

• ADD_QUOTA_OPERATION—Adds the new quota value to the current value of the bucket 
residing on the SCE platform 

• SET_QUOTA_OPERATION—Replaces the value of the quota bucket residing on the SCE 
platform with the new value 

EXAMPLES 
Current values of subscriber A's quota at the SCE is as follows: 

 
We want to apply the following actions to the existing quota: 

 



Chapter 4      Getting Familiar with the API Data Types 

 Subscriber Quota 
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

4-6  OL-8236-03 
 

 

After performing the quota actions, the result is: 

 
For additional information about Subscriber Quota, see the Service Control Application for 
Broadband User Guide. 

The following sections describe the classes the API provides for operations that include the 
subscriber quota management operations. 
 

SCAS_BB_Quota 
The SCAS_BB_Quota class implements the Quota interface, which the QuotaListenerEx (on page 
5-10) interface uses in all callback functions. 

The following method constructs the SCAS_BB_Quota based on the array of IDs and values: 
 

public SCAS_BB_Quota (String[] bucketIDs, 
                      long[] bucketValues) 

The following method constructs the SCAS_BB_Quota based on the array of IDs and values, the 
profile ID, the reason, and the timestamp: 

 
public SCAS_BB_Quota (String[] bucketIDs, 
                      long[] bucketValues, 
                      int quotaProfileId, 
                      int reason, 
                      long timestamp) 

The following method allows retrieving of the quota buckets' IDs: 
 

public String[] getBucketIDs() 

The following method allows retrieving of the quota buckets' values: 
 

public long[] getBucketValues() 

The quotaProfileId parameter is the identifier for the quota profile, which is the package ID. 
The following method allows retrieving of the quota profile ID: 

 
public int getQuotaProfileId() 

The reason parameter is relevant only for quota status events and has three possible values: 

• 0—The configured time was reached, for example, every two minutes 

• 1—The quota status event was triggered by a subscriber logout 

• 2—The quota status event was triggered by a package change 



Chapter 4      Getting Familiar with the API Data Types 

Bulk Operations Data Types 
 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  4-7 
 

 

The following method allows retrieving of the reason: 
 

public int getReason() 

The timestamp parameter contains the time (in the SCE) at which the event was generated. It is 
calculated as the number of seconds from January 1, 1970 00:00 GMT. 

The following method allows retrieving of the timestamp: 
 

public long getTimestamp() 
 

 

SCAS_BB_QuotaOperation 
The SCAS_BB_QuotaOperation class implements the QuotaOperation interface, which is used 
for Subscriber Provisioning operations that include the subscriber's quota such as login operation 
(see the login operation (on page 5-19) section) and update quota operation (see the quotaUpdate 
operation (on page 5-27)). 

The following method constructs the SCAS_BB_QuotaOperation based on the array of IDs, 
values and actions: 

 
public SCAS_BB_QuotaOperation (String[] IDs,                
                               long[] values,                   
                               short[] actions) 

The following method allows retrieving of the quota buckets' IDs: 
 

public String[] getBucketIDs() 

The following method allows retrieving of the quota buckets' values: 
 

public long[] getBucketValues() 

The following method allows retrieving of the quota buckets' actions: 
 

public short[] getBucketActions() 
 

Bulk Operations Data Types 
Use bulk classes and operations when performing the same method for many subscribers each 
with its own parameters. The API provides the bulk classes for result handling of bulk operations 
and for bulk indications from the SCE. The bulk classes are passed to the bulk methods such as 
loginBulk and logoutBulk. 

The following is a list of considerations when using the bulk operations: 

• All bulk classes are inherited from the common BulkBase class. 

• Due to the memory constraints of the SCE, the bulk size is limited to a maximum of 100 
entries. 

 
 



Chapter 4      Getting Familiar with the API Data Types 

 Bulk Operations Data Types 
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

4-8  OL-8236-03 
 

 

Bulk Iterator 
The BulkBase class provides an iterator to view the data contained in the bulk. 

The following is the syntax for the Bulk Iterator: 
 

Iterator getIterator() 

This iterator can be used for iteration over the bulks received from the SCE in various indications 
(for example, logoutBulkIndication, loginPullBulkResponseIndication, and so forth) or for 
inspecting the data you provided to various operations in case an operation has failed. 

The iterator provides the following methods for data retrieval: 
 

public Object next() 
public boolean hasNext() 

The next() method returns a SubscriberData object. 

The SubscriberData (on page 4-8) class is used for retrieving the information of a single 
subscriber contained within the bulk. 
 

SubscriberData 
The SubscriberData class represents all of the operations that can be performed on a specific 
subscriber. The SubscriberData class contains the following utility methods for information 
retrieval: 

 
public String getSubscriberID() 
public String getAnonymousID() 
public String[] getMappings() 
public short[] getTypes() 
public boolean getAdditiveFlag() 
public String[] getPolicyStrings() 
public String[] getQuotaStrings() 
public String[] getQuotaOperationStrings() 

The following sections describe various bulk data types that are available for different API 
operations. 
 

Login_BULK Class 
This class represents bulk of subscribers and it includes all data required for the loginBulk 
operation. 
 

Constructor 
To construct the Login_BULK filled with the data use the following constructor: 

 
public Login_BULK(String[] subscriberIDs, 
                  NetworkID[] networkIDs, 
                  boolean[]networkIDsAdditive, 
                  PolicyProfile[] policy, 
                  QuotaOperation[] quota) 

 



Chapter 4      Getting Familiar with the API Data Types 

Bulk Operations Data Types 
 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  4-9 
 

 

Parameters 
subscriberID—The unique ID of the subscriber. See the Subscriber ID (on page 4-1) section 
for the subscriber ID format description. 

networkID—The network identifier of the subscriber. See the Network ID Mappings (on page 
4-2) section for more information. 

networkIDAdditive—If this flag is set to TRUE, the supplied NetworkID is added to the 
existing networkIDs of the subscriber. Otherwise, the supplied networkID replaces the existing 
networkIDs. 

policy—Policy profile of the subscriber. See the SCA BB Subscriber Policy Profile (on page 4-
4) section for more information. 

quota—Quota of the subscriber. See the Subscriber Quota (on page 4-5) section for more 
information. 

To construct an empty Login_BULK, use the following method: 
 

public Login_BULK() 
 

addBulkEntry Method 
Use the following method to add entries to the bulk: 

 
public void addBulkEntry(String subscriberID, 
                         NetworkID networkID, 
                         boolean networkIdsAdditive, 
                         PolicyProfile policy, 
                         QuotaOperation quota) 

 

Parameters 
subscriberID—The unique ID of the subscriber. See the Subscriber ID (on page 4-1) section 
for the subscriber ID format description. 

networkID—The network identifier of the subscriber. See the Network ID Mappings (on page 
4-2) section for more information. 

networkIDAdditive—If this flag is set to TRUE, the supplied NetworkID is added to the 
existing networkIDs of the subscriber. Otherwise, the supplied networkID replaces the existing 
networkIDs. 

policy—Policy profile of the subscriber. See the SCA BB Subscriber Policy Profile (on page 4-
4) section for more information. 

quota—Quota of the subscriber. See the Subscriber Quota (on page 4-5) section for more 
information. 
 



Chapter 4      Getting Familiar with the API Data Types 

 Bulk Operations Data Types 
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

4-10  OL-8236-03 
 

 

Examples 
The following example demonstrates the usage of the Login_BULK object: 

 
// Prepare all data for the bulk construction 
String[] names = new String[5]; 
NetworkID[] mappings = new NetworkID[5]; 
boolean[] additive = new boolean[5]; 
PolicyProfile[] policy = new PolicyProfile[5]; 
         
for (int i=0; i< 5; i++) 
{ 
    names[i]="sub_"+i; 
    mappings[i] = new NetworkID(”1.1.1.”+i,NetworkID.TYPE_IP); 
    additive[i] = true; 
    policy[i] = new PolicyProfile(new String[]{"packageId="+(i+1)}); 
} 
 
// construct the bulk object 
Login_BULK bulk = new Login_BULK(names,mappings,additive,policy,null); 
// Now it can be used in loginBulk operation 
sceApi.loginBulk(bulk,null); 

An alternative way of manipulating Login_BULK: 
 

// Construct the empty bulk 
Login_BULK bulk = new Login_BULK (); 
 
// Fill the bulk using addBulkEntry method: 
for (int i=0; i<20; i++) 
{ 
    String name ="sub_"+i; 
    NetworkID mappings = new NetworkID(i+1); 
    boolean additive = true; 
    PolicyProfile policy = new PolicyProfile( 
                                 new String[]{"packageId="+(i+1)}); 
    QuotaOperation quota = new SCAS_BB_QuotaOperation( 
           new String[]{“1”,”2”,”3”}, 
           new long[]{80,80,0} 
           new short[]{SCAS_BB_QuotaOperation.ADD_QUOTA_OPERATION, 
                       SCAS_BB_QuotaOperation.ADD_QUOTA_OPERATION, 
                       SCAS_BB_QuotaOperation.SET_QUOTA_OPERATION}); 
    bulk.addBulkEntry(name,mappings,additive,policy,quota); 
} 
// Now it can be used in loginBulk operation 
sceApi.loginBulk(bulk,null); 

 

SubscriberID_BULK Class 
The logoutBulkIndication callback function that requires only subscriber IDs to be 
entered uses the SubscriberID_BULK class. See logoutBulkIndication callback method (on page 
5-10). 
 



Chapter 4      Getting Familiar with the API Data Types 

Bulk Operations Data Types 
 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  4-11 
 

 

Constructors 
To construct the SubscriberID_BULK with Subscriber IDs data, use the following constructor: 

 
public SubscriberID_BULK(String[] subscriberIDs)                      

To construct an empty SubscriberID_BULK, use the following method: 
 

public SubscriberID_BULK() 
 

Parameters 
subscriberID—The unique ID of the subscriber. See the Subscriber ID (on page 4-1) section 
for the subscriber ID format description. 
 

addBulkEntry Method 
Use the following method to add entries to the SubscriberID bulk: 

 
addBulkEntry(String subscriberID) 

 

Parameters 
subscriberID—The unique ID of the subscriber. See the Subscriber ID (on page 4-1) section 
for the subscriber ID format description. 
 

NetworkAndSubscriberID_BULK Class 
Use the NetworkAndSubscriberID_BULK class in bulk operations that require Subscriber IDs 
and NetworkIDs in the following operations: 

• getSubscribersBulkResponse callback (see the LoginPullListener (on page 5-8) section) 

• logoutBulk operation (see the logoutBulk operation (on page 5-24) section) 

• networkIDUpdateBulk operation (see the networkIdUpdateBulk operation (on page 5-25) 
section) 

 

Constructors 
To construct the NetworkAndSubscriberID_BULK with the SubscriberID and NetworkID data, 
use the following constructor: 

 
public NetworkAndSubscriberID_BULK(String[] subscriberIDs, 
                                   NetworkID[] networkIDs, 
                                   boolean[] netIdAdditive) 

To construct an empty NetworkAndSubscriberID_BULK, use the following method: 
 

public NetworkAndSubscriberID_BULK() 
 



Chapter 4      Getting Familiar with the API Data Types 

 Bulk Operations Data Types 
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

4-12  OL-8236-03 
 

 

Parameters 
subscriberID—The unique ID of the subscriber. See the Subscriber ID (on page 4-1) section 
for more information. 

networkID—The network identifier of the subscriber. See the Network ID Mappings (on page 4-
2) section for more information. 

networkIDAdditive—If this flag is set to TRUE, the supplied NetworkID is added to the 
existing networkIDs of the subscriber. Otherwise, the supplied networkID replaces the existing 
networkIDs. 
 

addBulkEntry Method 
Use the following method to add entries to the bulk: 

 
addBulkEntry(String subscriberID, 
             NetworkID networkID, 
             boolean netIdAdditive) 

 

Parameters 
subscriberID—The unique ID of the subscriber. See the Subscriber ID (on page 4-1) section 
for more information. 

networkID—The network identifier of the subscriber. See the Network ID Mappings (on page 4-
2) section for more information. 

networkIDAdditive—If this flag is set to TRUE, the supplied NetworkID is added to the 
existing networkIDs of the subscriber. Otherwise, the supplied networkID replaces the existing 
networkIDs. 
 

LoginPullResponse_BULK Class 
This class represents a bulk of subscribers and includes all data required for the 
loginPullResponseBulk method. 
 

Constructors 
To construct the LoginPullResponse_BULK containing the relevant data, use the following 
constructor: 

 
public LoginPullResponse_BULK(String[] anonymousSubscriberIDs, 
                              String[] subscriberIDs, 
                              NetworkID[] networkIDs, 
                              boolean[] networkIdsAdditive, 
                              PolicyProfile[] policy, 
                              QuotaOperation[] quota) 

To construct an empty LoginPullResponse_BULK, use the following method: 
 

public LoginPullResponse_BULK() 
 



Chapter 4      Getting Familiar with the API Data Types 

Bulk Operations Data Types 
 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  4-13 
 

 

Parameters 
anonymousSubscriberID—The identifier of the anonymous subscriber. This is sent by the 
SCE within the loginPullRequest/loginPullBulkRequest (on page 5-8) indication. See the 
Subscriber Integration Models (on page 2-2) section for more information. 

subscriberID—The unique ID of the subscriber. See the Subscriber ID (on page 4-1) section 
for more information. 

networkID—The network identifier of the subscriber. See the Network ID Mappings (on page 4-
2) section for more information. 

networkIDAdditive—If this flag is set to TRUE, the supplied NetworkID is added to the 
existing networkIDs of the subscriber. Otherwise, the supplied networkID replaces the existing 
networkIDs. 

policy—The policy profile of the subscriber. See the SCA BB Subscriber Policy Profile (on page 
4-4) section for more information. 

quota—The quota of the subscriber. See the Subscriber Quota (on page 4-5) section for more 
information. 
 

addBulkEntry Method 
Use the following method to add entries to the bulk: 

 
public addBulkEntry(String anonymousSubscriberID, 
                    String subscriberID, 
                    NetworkID networkID, 
                    boolean networkIdAdditive, 
                    PolicyProfile policy, 
                    QuotaOperation quota) 

 

Parameters 
anonymousSubscriberID—The identifier of the anonymous subscriber. This is sent by the 
SCE within the loginPullRequest/loginPullBulkRequest (on page 5-8) indication. See the 
Subscriber Integration Models (on page 2-2) section for more information. 

subscriberID—The unique ID of the subscriber. See the Subscriber ID (on page 4-1) section 
for more information. 

networkID—The network identifier of the subscriber. See the Network ID Mappings (on page 4-
2) section for more information. 

networkIDAdditive—If this flag is set to TRUE, the supplied NetworkID is added to the 
existing networkIDs of the subscriber. Otherwise, the supplied networkID replaces the existing 
networkIDs. 

policy—The policy profile of the subscriber. See the SCA BB Subscriber Policy Profile (on page 
4-4) section for more information. 

quota—The quota of the subscriber. See the Subscriber Quota (on page 4-5) section for more 
information. 
 



Chapter 4      Getting Familiar with the API Data Types 

 Bulk Operations Data Types 
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

4-14  OL-8236-03 
 

 

PolicyProfile_BULK Class 
The updatePolicyProfileBulk operation uses this class that represents a bulk of subscriber 
IDs and subscriber policy profiles. 
 

Constructors 
To construct the PolicyProfile_BULK containing the relevant data, use the following 
constructor: 

 
public PolicyProfile_BULK(String[] subscriberIDs, PolicyProfile[] policy) 

To construct an empty PolicyProfile_BULK, use the following method: 
 

public PolicyProfile_BULK() 
 

Parameters 
subscriberID—The unique ID of the subscriber. See the Subscriber ID (on page 4-1) section 
for more information. 

policy—The policy profile of the subscriber. See the SCA BB Subscriber Policy Profile (on page 
4-4) section for more information. 
 

addBulkEntry Method 
Use the following method to add entries to the bulk: 

 
public addBulkEntry(String subscriberID,  PolicyProfile policy) 

 

Parameters 
subscriberID—The unique ID of the subscriber. See the Subscriber ID (on page 4-1) section 
for more information. 

policy—The policy profile of the subscriber. See the SCA BB Subscriber Policy Profile (on page 
4-4) section for more information. 
 

Quota_BULK Class 
The following operations use this class that represents a bulk of subscribers IDs and subscriber 
quota buckets: 

• getQuotaStatusBulk operation (only the bucket IDs are to be provided) 

• quotaStatusBulkIndication callback method 

• quotaDepletedBulkIndication callback method 

• quotaBelowThresholdIndication callback method 
 



Chapter 4      Getting Familiar with the API Data Types 

Bulk Operations Data Types 
 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  4-15 
 

 

Constructors 
To construct the Quota_BULK containing the relevant data, use the following constructor: 

 
public Quota_BULK(String[] subscriberIDs, Quota[] subscribersQuota) 

To construct an empty Quota_BULK, use the following method: 
 

public Quota_BULK() 
 

Parameters 
subscriberID—The unique ID of the subscriber. See the Subscriber ID (on page 4-1) section 
for more information. 

quota—The quota of the subscriber. See the Subscriber Quota (on page 4-5) section for more 
information. 
 

addBulkEntry Method 
Use the following method to add entries to the bulk: 

 
public addBulkEntry(String subscriberID,Quota quota) 

 

Parameters 
subscriberID—The unique ID of the subscriber. See the Subscriber ID (on page 4-1) section 
for more information. 

quota—The quota of the subscriber. See the Subscriber Quota (on page 4-5) section for more 
information. 
 

QuotaOperation_BULK Class 
The QuotaUpdateBulk operation and the login operation use this class that represents a bulk 
of subscribers IDs and subscriber Quota operations. 
 

Constructors 
To construct the QuotaOperation_BULK containing the relevant data, use the following 
constructor: 

 
public QuotaOperation_BULK(String[] subscriberIDs, 
                           QuotaOperation[]quotaOperations) 

To construct an empty QuotaOperation_BULK, use the following method: 
 

public QuotaOperation_BULK() 
 

Parameters 
subscriberID—The unique ID of the subscriber. See the Subscriber ID (on page 4-1) section 
for more information. 

quotaOperation—The quota operation to perform on the quota of the subscriber. See the 
Subscriber Quota (on page 4-5) section for more information. 
 



Chapter 4      Getting Familiar with the API Data Types 

 Bulk Operations Data Types 
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

4-16  OL-8236-03 
 

 

addBulkEntry Method 
Use the following method to add entries to the bulk: 

 
addBulkEntry(String subscriberID, QuotaOperation quotaOperation) 

 

Parameters 
subscriberID—The unique ID of the subscriber. See the Subscriber ID (on page 4-1) section 
for more information. 

quotaOperation—The quota operation to perform on the quota of the subscriber. See the 
Subscriber Quota (on page 4-5) section for more information. 
 



 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  5-1 
 

 

This chapter provides a detailed description of the API programming structure, classes, methods, 
and interfaces. 

This chapter contains the following sections: 

• API classes summary 5-1 

• Programming Guidelines 5-2 

• PRPC_SCESubscriberApi class 5-3 

• Indications Listeners 5-7 

• Connection Monitoring 5-14 

• Result Handling 5-15 

• Subscriber Provisioning Operations 5-19 

• SCE-API Synchronization 5-31 

• Advanced API Programming 5-35 

• API Code Examples 5-37 
 
 

API classes summary 
The following list maps the classes provided by the API. 
 

Package com.scms.api.sce.prpc 
• PRPC_SCESubscriberApi (on page 5-3)—Main API class.  

 

Package com.scms.api.sce 

Indications Listeners 
• LoginPullListener Interface Class (on page 5-8) (interface)  

• LogoutListener Interface Class (on page 5-10) (interface)  

• QuotaListenerEx Interface Class (on page 5-10)  (interface) 
 

C H A P T E R  5  

Programming with the SCE Subscriber API 



Chapter 5      Programming with the SCE Subscriber API 

 Programming Guidelines 
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

5-2  OL-8236-03 
 

 

Connection Monitoring 
• ConnectionListener (on page 5-14) (interface) 

 

Operations Result Handling 
• OperationException (on page 5-18) (class) 

• SCESubscriberApi (interface)—Contains error codes constants that can be received inside 
OperationException 

• OperationArguments (on page 5-16) (class) 

• OperationResultHandler (on page 5-15) (interface) 
 

Package com.scms.common 
com.scms.common package contains all data types used by the API. 

• Login_BULK (on page 4-8) (class) 

• LoginPullResponse_BULK (on page 4-12) (class) 

• NetworkAndSubscriberID_BULK (on page 4-11) (class)  

• PolicyProfile_BULK (on page 4-4) (class) 

• SubscriberID_BULK (on page 4-10) (class) 

• SubscriberData (on page 4-8) (class) 

• SCAS_BB_Quota (on page 4-6) (class) 

• SCAS_BB_QuotaOperation (on page 4-7) (class) 

• NetworkID (on page 4-2) (class) 

• PolicyProfile (on page 4-4) (class) 
 

Programming Guidelines 
Programming with callback methods 

As described in previous sections, many of the API operations are based on callback methods. The 
user provides a “listener”, which is called when certain events occur. The following warning 
defines the main guideline for programming with callback methods. 

 

 
 

Caution Do not perform long operations within the thread of the callback method. Long operations should be 
performed from a separate thread. Moreover, not following this recommendation might result in 
resource leakage on the client's side. 

This caution applies to the following operations: 

• LoginPullListener callback methods 



Chapter 5      Programming with the SCE Subscriber API 

PRPC_SCESubscriberApi class 
 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  5-3 
 

 

• LogoutListener callback methods 

• QuotaListenerEx callback methods 

• ConnectionListener callback methods 
 

PRPC_SCESubscriberApi class 
The PRPC_SCESubscriberAPI class (resides in a com.scms.sce.api.prpc package) is the main API 
class that provides the following functionality: 

• Constructing the API 

• Connecting the API to exactly one SCE (configuring the connection attributes) 

• Registering/unregistering indications listeners 

• Setting the connection listener 

• Performing Subscriber Provisioning operations 

• Disconnecting from the SCE 
 

API Construction 
The PRPC_SCESubscriberAPI provides the following constructors: 

Syntax: 
 

public PRPC_SCESubscriberApi(String apiName, String sceHost) 
                                             throws UnknownHostException 
 
public PRPC_SCESubscriberApi(String apiName, 
                             String sceHost, 
                             long autoReconnectInterval) 
                                             throws UnknownHostException 
 
public PRPC_SCESubscriberApi(String apiName, 
                             String sceHost, 
                             int scePort, 
                             long autoReconnectInterval) 
                                             throws UnknownHostException 

Parameters: 

The following is a description of the constructor arguments for the API constructors: 

apiName—Specifies an API name. 
 

 
 

Note  The API name should be unique per SCE. If you construct more than one API with the same name and 
connect it to a single SCE, the SCE platform will handle the APIs as one API client. Use this feature 
only when high-availability is supported. For more information about high availability, see the 
Implementing High Availability (on page 5-35) section. 

 



Chapter 5      Programming with the SCE Subscriber API 

 PRPC_SCESubscriberApi class 
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

5-4  OL-8236-03 
 

 

sceHost—Can be either an IP address or a reachable hostname. 

scePort—PRPC protocol TCP port to connect to the SCE (default value is 14374) 

autoReconnectInterval—Defines the interval (in milliseconds) for attempting reconnection 
by the reconnection task, as follows: 

• If the value is 0 or less, the reconnection task is not activated (no auto-reconnect is attempted). 

• If the value is greater than 0 and a connection failure exists, the reconnection task will be 
activated every <autoReconnectInterval> milliseconds. 

• Default value: -1 (no auto-reconnect is attempted) 
  

 
 

Note To enable the auto-reconnect support, the connect method of the API must be called at least once. 

 

Examples: 

The following code constructs an API with an auto-reconnection interval of 10 seconds: 
 

PRPC_SCESuscriberAPI sceApi = new PRPC_SCESuscriberAPI(“MyApi”, 
                                                       ”10.1.1.1”, 
                                                        10000); 
sceApi.connect(); 

The following code constructs an API without auto-reconnection support: 
 

PRPC_SCESuscriberAPI sceApi = new PRPC_SCESuscriberAPI(“MyApi”, 
                                                       ”10.1.1.1”); 
sceApi.connect(); 

 

Listeners Setup Operations 
After initializing the API, it should be set-up with the utilized listeners based on the type of 
application using the API, and the topology used. For more information about topologies, see the 
Supported Topologies (on page 2-4) sections. 

The listeners setup operations may include: 

• Setting a connection listener, described in more detail in the ConnectionListener Interface (on 
page 5-14) section: 

 
public void setConnectionListener(ConnectionListener listener) 

• Setting a login-pull listener, described in more detail in the LoginPullListener Interface (on 
page 5-8) section: 

 
public void registerLoginPullListener(LoginPullListener listener) 

• Setting a logout listener, described in more detail in the LogoutListener Interface (on page 5-
10) section. 

 
public void registerLogoutListener(LogoutListener listener) 

• Setting a quota listener, described in more detail in the QuotaListenerEx Interface (on page 5-
10) section. 



Chapter 5      Programming with the SCE Subscriber API 

PRPC_SCESubscriberApi class 
 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  5-5 
 

 

 
public void registerQuotaListener(QuotaListener listener) 

 

 
 

Note The listener registration to the API causes resource allocations in the SCE to support reliable delivery of 
messages to the listener. Even if the application that uses the API crashes and restarts after a short time 
the messages are kept and sent to the SCE when the API reconnects. 

 

Advanced Setup Operations 
The API enables initializing certain internal properties for API customization. The initialization is 
done using the API init method. 

 

 
 

Note For settings to take effect, the init method must be called before the connect method. 

The following properties can be set: 

• Output queue size—The internal buffer size defining the maximum number of requests that 
can be accumulated by the API until they are sent to the SCE (Default: 1024) 

• Operation timeout—A suggested time interval about the desired timeout (in milliseconds) on a 
non-responding PRPC protocol connection (Default: 45 seconds) 

 

Syntax 
The syntax for the init method is as follows: 

 
public void init(Properties properties) 

 

Parameters 
• properties (java.util.Properties) 

Enables setting the properties described above: 

• To set the output queue size, use prpc.client.output.machinemode.recordnum as 
a property key 

• To set the operation timeout, use 
com.scms.api.sce.prpc.regularInvocationTimeout or 
com.scms.api.sce.prpc.listenerInvocationTimeout as a property key 

 

 
 

Note com.scms.api.sce.prpc.listenerInvocationTimeout is used for operations that may 
be invoked from listener callback. This timeout should be shorter than 
com.scms.api.sce.prpc.regularInvocationTimeout to avoid deadlocks. 

 
 



Chapter 5      Programming with the SCE Subscriber API 

 PRPC_SCESubscriberApi class 
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

5-6  OL-8236-03 
 

 

Example 
The following code shows how to customize properties during initialization: 

 
// API construction 
PRPC_SCESuscriberAPI sceApi = new PRPC_SCESuscriberAPI(“MyApi”, 
                                                       “10.1.1.1”,10000); 
// API initialization 
java.util.Properties p = new java.util.Properties(); 
p.setProperty("prpc.client.output.machinemode.recordnum", 2048+""); 
 
api.init(p); 
 
// connect to the API 
sceApi.connect(); 

 

 
 

Note The init method is called before the connect method. 

 
 

Connecting to the SCE 
After setting up the API, you should attempt to connect to the SCE. If the auto-reconnect feature 
is activated, the API will handle any disconnection from this point on. 

To connect to the SCE, use the following methods: 
 

public void connect() throws Exception 

At any time during the API operation, you can check if the API is connected to the SCE by using 
the method isConnected(): 

 
public boolean isConnected() 

  

 
 

Note Every API instance supports a connection to exactly one SCE platform. 
 

getApiVersion 

Syntax 
 

public String getApiVersion() 
 

Description 
This method queries the API version. Version is a string formatted as <Major Version.Minor 
Version>. 
 



Chapter 5      Programming with the SCE Subscriber API 

Indications Listeners 
 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  5-7 
 

 

API Finalization 
To free the resources of both server and client, call the disconnect method: 

 
public void disconnect() 

The call to the disconnect method frees the resources in the SCE that manages the reliability of 
the connection from the SCE to the API. If the application is restarting and you do not want to 
lose any messages, do not use the disconnect method. 

It is recommended that you use a finally statement in your main class. For example: 
 

public static void main(String [] args) throws Exception  
{ 
 PRPC_SCESubscriberApi sceapi = new PRPC_SCE_SubscriberApi (“myApi”, 
                                                              “sceHost”); 
 try 
  { 
  … 
        // Your code goes here 
  } 
  finally 
  { 
  sceapi.disconnect(); 
  } 
} 

 

Indications Listeners 
The SCE platform issues several types of indications when certain events occur. There are three 
types of indications: 

• Login-pull indications 

• Logout indications 

• Quota indications 

The indications are sent only if there are listeners that are registered to listen to those indications. 
For every type of indications, a separate listener may be registered. For descriptions about the 
events that trigger these indications, see the API Events (on page 3-1) chapter. 
 



Chapter 5      Programming with the SCE Subscriber API 

 Indications Listeners 
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

5-8  OL-8236-03 
 

 

LoginPullListener Interface Class 
The LoginPullListener interface defines a set of callback functions that are used only in the 
pull model. 

Policy Servers that are responsible for the Network ID management part of the Subscriber 
Provisioning process and intend to work in the pull model should register a LoginPullListener to 
enable to respond to the login-pull requests from the SCE and to synchronize the SCE platform. 

To enable listening to those indications, the API allows a listener to be set for these types of 
indications: 

 
public void registerLoginPullListener(LoginPullListener listener) 
public void unregisterLoginPullListener(LoginPullListener listener) 

 

 
 

Note The API supports one LoginPullListener at a time. Furthermore, it is strongly recommended not to have 
more than one API that has registered a LoginPullListener. This can lead to non-synchronized SCE 
platforms if both SCEs respond to the same login-pull request.  

LoginPullListener is an interface that is implemented to enable to register a login-pull 
indications listener. It is defined as follows: 

 
public interface LoginPullListener 
{ 
     public void loginPullRequest (String anonymousSubscriberID, 
                                   NetworkID networkID) 
 
     public void loginPullRequestBulk(NetworkAndSubscriberID_BULK  subs) 
     
     public void getSubscribersBulkResponse( 
                               NetworkAndSubscriberID_BULK  subs, 
                               SubscriberBulkResponseIterator iterator) 
} 

 



Chapter 5      Programming with the SCE Subscriber API 

Indications Listeners 
 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  5-9 
 

 

loginPullRequest callback method 
When the SCE encounters an unknown IP address's subscriber-side traffic, it issues a request for 
the subscriber login information based on the IP address (see Pull model (on page 3-2) in API 
Events chapter). The SCE expects the policy server to respond with the configuration data of the 
subscriber data to which this IP was allocated. 

This request is dispatched to the registered listener and triggers the loginPullRequest 
callback function. Upon this callback, the listener should retrieve the subscriber information of 
the subscriber matching this IP address and activate loginPullResponse to deliver the 
information to the SCE (see loginPullResponse operation (on page 5-21) section in Subscriber 
Provisioning Operations). If no information exists for this IP address, no response is issued. 

The following diagram illustrates the loginPullRequest callback method: 

 
 

Parameters 
• anonymousSubscriberID—This anonymous subscriber ID must be supplied to the 
loginPullResponse operation (see the loginPullResponse operation (on page 5-21) 
section). Also see the Anonymous Subscriber ID (on page 2-2) section.  

• networkID—The network identifier of the unknown subscriber. See the NetworkID (on page 
2-2) section for more information. 

 

loginPullRequestBulk callback method 
This callback function is the bulk version of the loginPullRequest callback function that is 
described above. 
 

Parameters 
• subs—Contains pairs of NetworkIDs and anonymous IDs of several subscribers. See the 

parameters description of the loginPullRequest (on page 5-9) callback method for more 
information. 

The Policy Server can respond to this request by the loginPullBulkResponse (on page 5-22) 
method activation or by activating the loginPullResponse (on page 5-21) method for each 
NetworkID in the bulk. To iterate over the data contained in the subs parameter use the next() (on 
page 4-8) iteration method provided by the bulk class. 
 

GetSubscribersBulkResponse callback method 
This callback method is used during the SCE synchronization process in the pull model. For a 
detailed description, see the SCE-API Synchronization (on page 5-31) section. 
 



Chapter 5      Programming with the SCE Subscriber API 

 Indications Listeners 
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

5-10  OL-8236-03 
 

 

LogoutListener Interface Class 
Policy Servers that are responsible for the Network ID management part of the Subscriber 
Provisioning process might want to register a LogoutListener to be notified when certain 
subscribers are actually removed from the SCE platform. 

The API allows setting a LogoutListener to be able to receive logout indications. 
 

public void registerLogoutListener(LogoutListener listener) 
public void unregisterLogoutListener(LogoutListener listener) 

 

 
 

Note The API supports one LogoutListener at a time. 

The following sections describe callback functions of the LogoutListener interface. 
 

logoutIndication callback method 
When the SCE platform identifies the logout of the last Network-ID of the subscriber identified 
by the subscriberID, it issues the logout indication. This triggers a call to the 
logoutIndication callback function of all registered logout indications listeners. 

 
public void logoutIndication(String subscriberID) 

 

Parameters 
• subscriber ID—A unique identifier of the subscriber. See Subscriber ID (on page 4-1) 

for more information. The SCE no longer handles this subscriber ID. 
 

logoutBulkIndication callback method 
When the SCE platform identifies the logout of the last NetworkID of the group of subscribers, it 
issues the logout bulk indication. This triggers a call to the logoutBulkIndication 
callback function of all registered logout indications listeners. 

 
public void logoutBulkIndication(SubscriberID_BULK subs) 

 

Parameters 
• subs—Contains subscriber IDs of the subscribers that were logged out. See the 

SubscriberID_BULK (on page 4-10) section for more information. 
 

QuotaListenerEx Interface Class 
 

 
 

Note From version 3.0.5, the QuotaListener interface is deprecated and should be replaced with 
QuotaListenerEx. For backwards compatibility, the QuotaListener interface still exists, but you should 
use the QuotaListenerEx interface when integrating with version 3.0.5 of the API. 



Chapter 5      Programming with the SCE Subscriber API 

Indications Listeners 
 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  5-11 
 

 

Policy Servers that are responsible for the Quota management operations in the Subscriber 
Provisioning Process should be able to receive quota-related indications issued by the SCE 
platform. 

The API allows setting the QuotaListener to be able to receive quota indications. 
 

public void registerQuotaListener(QuotaListener listener) 
public void unregisterQuotaListener(QuotaListener listener) 

 

 
 

Note The API supports one QuotaListener at a time. 
 

 
 

Note The QuotaListener interface is used for backward compatibility, but it is recommended to pass an object 
that implements QuotaListenerEx. 

The following sections describe the callback functions of the QuotaListenerEx interface. 
 

 
 

Note The Bulk versions of the quota callback methods are not used in this release of the API. 

 
 

quotaStatusIndication callback method 
Quota status indication delivers the remaining value of the specified set of the quota buckets for a 
specific subscriber. This indication is issued by the SCE periodically or upon a call to the 
getQuotaStatus operation (see the getQuotaStatus (on page 5-29) section) and is distributed to 
the registered listener by activating a quotaStatusIndication callback function. 

 
public void quotaStatusIndication(String subscriberID,                             
                                  Quota quota) 

 

Parameters 
• subscriberID—The unique ID of the subscriber. See the Subscriber ID (on page 4-1) 

section for more information. 

• quota—Quota of the subscriber. See Subscriber Quota (on page 4-5) section for more 
information. 

 



Chapter 5      Programming with the SCE Subscriber API 

 Indications Listeners 
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

5-12  OL-8236-03 
 

 

quotaStatusBulkIndication callback method 
Quota status bulk indication delivers the remaining value of the specified set of the quota buckets 
for a group of subscribers. This indication is issued by SCE periodically or upon a call to the 
getQuotaStatusBulk operation (see the Get Quota Status Event (on page 3-4) section) and is 
distributed to the registered listener by activating a quotaStatusBulkIndication callback 
function. 

 
public void quotaStatusBulkIndication(Quota_BULK subs)  

You can configure the period for periodically issued indications. For more information, see the 
Cisco Service Control Application for Broadband User Guide. 
 

Parameters 
• subs—Contains quota data of the bulk of the subscribers. See the Quota_BULK (on page 4-

14) section for more information. 
 

quotaBelowThresholdIndication callback method 
When the quota of a subscriber drops below a pre-configured threshold, the SCE platform issues 
an indication that is distributed to the registered listener by activating a 
quotaBelowThresholdIndication callback function. 

 
public void quotaBelowThresholdIndication(String subscriberID, 
                                          Quota quota) 

 

Parameters 
• subscriberID—The unique ID of the subscriber. See the Subscriber ID (on page 4-1) 

section for more information. 

• quota—Quota of the subscriber. See the Subscriber Quota (on page 4-5) section for more 
information. 

 

quotaBelowThresholdIBulkndication callback method 
When the quota of a group of subscribers drops below a pre-configured threshold, the SCE 
platform issues an indication that is distributed to the registered listener by activating a 
quotaBelowThresholdBulkIndication callback function. 

 
public void quotaBelowThresholdBulkIndication(Quota_BULK subs) 

 

Parameters 
• subs—Contains quota data of the bulk of the subscribers. See the Quota_BULK (on page 4-

14) section for more information. 
 

quotaDepletedIndication callback method 
When the quota of a subscriber is depleted, the SCE platform issues an indication that is 
distributed to the registered listener by activating a quotaDepletedIndication callback 
function. 

 
public void quotaDepletedIndication(String subscriberID, 
                                    Quota quota) 

 



Chapter 5      Programming with the SCE Subscriber API 

Indications Listeners 
 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  5-13 
 

 

Parameters 
• subscriberID—The unique ID of the subscriber. See Subscriber ID (on page 4-1) section 

for more information. 

• quota—Quota of the subscriber. See the Subscriber Quota (on page 4-5) section for more 
information. 

 

quotaDepletedBulkIndication callback method 
When the quota of a group of subscribers is depleted, the SCE platform issues an indication that is 
distributed to the registered listener by activating a quotaDepletedBulkIndication callback 
function. 

 
public void quotaDepletedBulkIndication (SubscriberID_BULK subs) 

 

Parameters 
• subs—Contains names of the subscribers whose quota was depleted. See the 

SubscriberID_BULK (on page 4-10) section for more information. 
 

quotaStateRestore callback method 
When a subscriber logs in to the policy server, the policy server performs a login operation to the 
SCE. The SCE issues a request to the policy server to restore the subscriber quota in the SCE by 
activating a quotaStateRestore callback function. The policy server should respond to this 
function with a Quota Update Event (on page 3-4). 

 
public void quotaStateRestore(String subscriberID, 
                              Quota quota) 

 

Parameters 
• subscriberID—The unique ID of the subscriber. See the Subscriber ID (on page 4-1) 

section for more information. 

• quota—Quota of the subscriber. See the Subscriber Quota (on page 4-5) section for more 
information. The bucket IDs array is of size 0 because when this indication is created all the 
quota buckets are empty. 

 

quotaStateBulkRestore callback method 
When a group of subscribers log in to the policy server, the policy server performs a login 
operation to the SCE. The SCE issues a request to the policy server to restore the subscriber quota 
in the SCE by activating a quotaStateBulkRestore callback function. The policy server 
should respond to this function with a Quota Update Event (on page 3-4). 

 
public void quotaStateBulkRestore(SubscriberID_BULK subs) 

 

Parameters 
• subs—Contains names of the subscribers whose quota was depleted. See the 

SubscriberID_BULK (on page 4-10) section for more information. 
 



Chapter 5      Programming with the SCE Subscriber API 

 Connection Monitoring 
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

5-14  OL-8236-03 
 

 

Connection Monitoring 
The SCMS SCE Subscriber API monitors the connection to the SCE platform. A Policy Server 
requesting to perform certain operations on connection establishment or disconnection from the 
SCE can implement a ConnectionListener interface. 
 

ConnectionListener Interface 
The API allows setting a connection listener. 

 
setConnectionListener(ConnectionListener listener) 

The connection listener is an interface that is defined as follows: 
 

public interface ConnectionListener { 
 
 /** 
  * called when the connection with the SCE is down. 
  */ 
 public void connectionIsDown(); 
 
 /** 
  * called when the connection with the SCE is established. 
  */ 
 public void connectionEstablished(); 
} 

The connection establishment callback is used to start the SCE synchronization. See the SCE-API 
Synchronization (on page 5-31) section for more information. 
 

Example 
The following example is a simple implementation of a disconnect listener that prints a message 
to stdout and returns. 

 
import com.scms.api.sce.ConnectionListener; 
 
public class MyConnectionListener implements ConnectionListener { 
 
 public void connectionIsDown(){ 
  System.out.println(“Message: connection is down.”); 
  return; 
 } 
 
 public void connectionEstablished(){ 
  System.out.println(“Message: connection is established.”); 
  // activate thread that starts SCE synchronization 
 } 
 
} 

 



Chapter 5      Programming with the SCE Subscriber API 

Result Handling 
 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  5-15 
 

 

Result Handling 
The API enables setting a result handler for every operation allowing handling operations results 
in a different manner. 

The OperationResultHandler interface's handleOperationResult callback is called when a result of 
an operation, which ran on the SCE, returns to the API. 

If no result handling is required for a specific operation, insert null in the handler argument. 
 

 
 

Note The same operation result handler can be passed to all operations. 

 
 

OperationResultHandler Interface 
This interface is implemented to receive results of operations performed through the API.  

The operation result handler is called with the following single method: 
 

public interface OperationResultHandler { 
 
 /** 
  * handle a result 
  */ 
 public void handleOperationResult(Object[] result, 
                                    OperationArguments handback); 
  
} 

You should implement this interface if you want to be informed about the results of operations 
performed through the API. 

 

 
 

Note The OperationResultHandler interface is the only way to retrieve results. The results cannot be returned 
immediately after the API method has returned to the caller. To enable to receive operation results, set 
the result handler of each operation at the time of the operation call (as displayed in the examples). 

The following is the data returned from the OperationResultHandler interface: 

• result—The actual result of the operation - each entry within the array can be one of the 
following: 

• NULL—indicates success of the operation. 

• OperationException—indicates operation failure (see below). 

For non-bulk operations, the result array will have only one entry. For bulk operations, each 
entry of the result array corresponds to the relevant entry in the bulk operation. 



Chapter 5      Programming with the SCE Subscriber API 

 Result Handling 
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

5-16  OL-8236-03 
 

 

• handback—The API automatically provides this object to every operation call. It contains the 
information about the operation that was called, including all arguments that were passed at 
the time of the call. The input arguments of the operation are retrieved by the argument name 
in the API documentation. For example, this data can be used to inspect/output the parameters 
after the operation failed or to repeat the operation call. 

 

 
 

Note In operations involving bulk objects, even if the operation fails for any specific element in the bulk, the 
processing of the bulk will continue until the end of the bulk. 

 

OperationArguments class 
Use the following methods to retrieve the operation name: 

 
public String getOperationName() 

Use the following methods to retrieve the arguments names: 
 

public String[] getArgumentNames()            

Use the following method to retrieve the specific operation argument. Use the operation's 
arguments' names from the operation signature as an argument: 

 
public Object getArgument(String name) 

 



Chapter 5      Programming with the SCE Subscriber API 

Result Handling 
 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  5-17 
 

 

Examples 
Sample implementation of the OperationResultHandler interface: 

 
public class MyOperationHandler implements OperationResultHandler 
{ 
  long sucessCounter = 0; 
  long errorCounter = 0; 
   
  public void handleOperationResult(Object[] result, 
                                    OperationArguments handback) 
  { 
     for (int index=0; index < result.length; index++) 
     { 
       if (result[index]==null) 
       { 
          // success 
          successCounter++; 
       } 
       else 
       { 
          // failure 
          errorCounter++; 
 
          // Extract error details 
          OperationException ex = (OperationException)result[index]; 
 
          // Extract operation name 
          String operationName = handback.getOperationName(); 
   
          // Print operation name and error message 
          System.out.println(“Error for operation ”+ 
                              operationName +”:” + 
                              ex.getErrorMessage()); 
          // Print operation arguments 
          String[] argNames = handback.getArgumentNames(); 
          if (argNames!=null) 
          { 
             for (int j=0; j<argNames.length; j++) 
             { 
               System.out.println(argNames[j]+  ”=“+ 
                     handback.getArgument(argNames[j])); 
             } 
          } 
       } 
     } 
  } 
} 

  

 
 

Note The above sample implementation can be used for both regular and bulk operations. 



Chapter 5      Programming with the SCE Subscriber API 

 Result Handling 
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

5-18  OL-8236-03 
 

 

The following example demonstrates login operation sample result handler: 
 

public class LoginOperationHandler implements OperationResultHandler 
{ 
    
    public void handleOperationResult(Object[] result, 
                                      OperationArguments handback) 
    { 
      for (int index=0; index < result.length; index++) 
      { 
        if (result[index]!=null) 
        { 
 
          // failure 
 
          // Extract error details 
          OperationException ex =  
                             (OperationException)result[index]; 
 
          // Print operation name and error message 
          System.out.println(“Error for login operation ”+ 
                             ”:” + ex.getErrorMessage()); 
 
          // Print subscriber ID parameter value 
          System.out.println(“subscriberID”+ 
                         handback.getArgument(“subscriberID”));  
        } 
      } 
    } 
} 

 

Operation Errors 

OperationException Class 
The com.scms.api.sce.OperationException Java class provides all of the functional 
errors of the SCMS SCE Subscriber API, which is contrary to the normal Java usage. This 
“contrary” approach was chosen because of the required “cross-language and cross-protocol” 
nature of the SCMS SCE Subscriber API, which should allow all future SCE API 
implementations to appear the same (Java, C, C++). 

Each OperationException exception provides the following information: 

• A unique error code (long) 

• An informative message (java.lang.String) 

• A server-side stack trace (java.lang.String) 

See the List of Error Codes (on page A-1) for more details about error codes and their meaning. 
 



Chapter 5      Programming with the SCE Subscriber API 

Subscriber Provisioning Operations 
 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  5-19 
 

 

Subscriber Provisioning Operations 
This section lists the methods of the API that can be used for Subscriber Provisioning purposes. 
The signature of each method is followed by a description of its input parameters and its return 
values. 

All the methods return a java.lang.IllegalStateException when called before a 
connection with the SCE is established. 
 

login operation 

Syntax 
 

void login(String subscriberID, 
           NetworkID networkID, 
           boolean networkIdAdditive, 
           PolicyProfile policy, 
           QuotaOperation quotaOperation, 
           OperationResultHandler handler) throws Exception 

 

Description 
This operation adds or updates the subscriber to the SCE. The operation is performed according to 
the following algorithm: 

• If the subscriber ID does not exists in the SCE,  a new subscriber is added with all the data 
supplied 

• If the subscriber ID exists: 

• If the networkIdAdditive flag is set to TRUE, the supplied NetworkID is added to the 
existing networkIDs of the subscriber. Otherwise, the supplied networkID replaces the 
existing networkIDs. 

• policy—Policy is updated with the new policy values. Subscriber Policy entries that are 
not provided within the PolicyProfile remain unchanged or created with default values. 

• quota—The quota is updated according to the bucket values and the operations provided 
(see the Subscriber Quota (on page 4-5) section ) 

• If there is a networkID congestion with another subscriber, the networkID of the other 
subscriber is logged out implicitly and the new subscriber is logged in. 

For relevant events description, see the Push Model (on page 3-2) section in the API Events 
chapter. 
 



Chapter 5      Programming with the SCE Subscriber API 

 Subscriber Provisioning Operations 
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

5-20  OL-8236-03 
 

 

Parameters 
subscriberID—The unique ID of the subscriber. See the Subscriber ID (on page 4-1) section 
for the subscriber ID format description. 

networkID—The network identifier or identifiers of the subscriber. See the Network ID 
Mappings (on page 4-2) section for more information. 

networkIDAdditive—If this flag is set to TRUE, the supplied NetworkID is added to the 
existing networkIDs of the subscriber. Otherwise, the supplied networkID replaces the existing 
networkIDs. 

policy—Policy profile of the subscriber. See the SCA BB Subscriber Policy Profile (on page 4-
4) section for more information. 

quota—Quota of the subscriber. See the Subscriber Quota (on page 4-5) section for more 
information. 

handler—Result handler for this operation. See the Result Handling (on page 5-15) section for 
a description of the OperationResultHandler interface. 
 

Error Codes 
The following is the list of error codes that this method might return: 

• ERROR_CODE_FATAL_EXCEPTION              

• ERROR_CODE_RESOURCE_SHORTAGE                                             

• ERROR_CODE_OPERATION_ABORTED            

• ERROR_CODE_INVALID_PARAMETER            

• ERROR_CODE_NO_APPLICATION_INSTALLED 

For a description of error codes, see List of Error Codes (on page A-1). 
 

Examples 
To add the IP address 192.168.12.5 to an existing subscriber named john without affecting any 
existing mappings: 

 
login( 
      “john”,      // subscriber name 
      new NetworkID(new String[]{“192.168.12.5”}, 
      SCESubscriberApi.ALL_IP_MAPPINGS), 
      true,                             // isMappingAdditive is true 
      null,                             // no policy 
      null);                            // no quota 

To add the IP address 192.168.12.5 overriding previous mappings: 
 

login( 
      “john”,      // subscriber name 
      new NetworkID(new String[]{“192.168.12.5”}, 
      SCESubscriberApi.ALL_IP_MAPPINGS), 
      false,                            // isMappingAdditive is false 
      null,                             // no policy 
      null);                            // no quota 

For more examples, see the Login and Logout (on page 5-37) section. 
 



Chapter 5      Programming with the SCE Subscriber API 

Subscriber Provisioning Operations 
 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  5-21 
 

 

loginBulk operation 

Syntax 
 

void loginBulk(Login_BULK subsBulk, 
               OperationResultHandler handler) throws Exception 

 

Description 
This operation applies the logic described in the login operation for each subscriber in the bulk. 
 

Parameters 
subsBulk—See the Login_BULK Class (on page 4-8) section. 

handler—Result handler for this operation. See the Result Handling (on page 5-15) section for 
a description of the OperationResultHandler interface. 
 

Error Codes 
The following is the list of error codes that this method  might return: 

• ERROR_CODE_FATAL_EXCEPTION              

• ERROR_CODE_RESOURCE_SHORTAGE                                             

• ERROR_CODE_OPERATION_ABORTED            

• ERROR_CODE_INVALID_PARAMETER            

• ERROR_CODE_NO_APPLICATION_INSTALLED 

For a description of error codes, see List of Error Codes (on page A-1). 
 

loginPullResponse operation 

Syntax 
 

void loginPullResponse(String anonymousSubscriberID, 
                       String subscriberID, 
                       NetworkID networkID, 
                       PolicyProfile policy, 
                       QuotaOperation quota, 
                       OperationResultHandler handler) throws Exception 

 

Description 
This operation sends subscriber login information to the SCE as a response to a 
loginPullRequest call from the SCE or a loginPullBulkRequest. 

For relevant events description, see the Pull model (on page 3-2) section in the API Events 
chapter. 
 



Chapter 5      Programming with the SCE Subscriber API 

 Subscriber Provisioning Operations 
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

5-22  OL-8236-03 
 

 

Parameters 
anonymousSubscriberID—The identifier of the anonymous subscriber. This is sent by the 
SCE within the loginPullRequest/loginPullBulkRequest (on page 5-8) indication. See the 
Anonymous Subscriber ID (on page 2-2) section for more information. 

subscriberID—The unique ID of the subscriber. See the Subscriber ID (on page 4-1) section 
for the subscriber ID format description. 

networkID—The network identifier of the subscriber. See the Network ID Mappings (on page 
4-2) section for more information. This must include the network ID received by the 
loginPullRequest. If this subscriber in the SCE already has other network IDs, this network ID is 
added to the existing ones. 

policy—Policy profile of the subscriber. See the SCA BB Subscriber Policy Profile (on page 4-
4) section for more information. 

quota—Quota of the subscriber. See the Subscriber Quota (on page 4-5) section for more 
information. 

handler—Result handler for this operation. See the Result Handling (on page 5-15) section for 
a description of the OperationResultHandler interface. 
 

Error Codes 
The following is the list of error codes that this method might return: 

• ERROR_CODE_FATAL_EXCEPTION              

• ERROR_CODE_RESOURCE_SHORTAGE                                             

• ERROR_CODE_OPERATION_ABORTED            

• ERROR_CODE_INVALID_PARAMETER            

• ERROR_CODE_NO_APPLICATION_INSTALLED 

For a description of error codes, see List of Error Codes (on page A-1). 
 

loginPullResponseBulk operation 

Syntax 
 

void loginPullResponseBulk(LoginPullResponse_BULK subsBulk, 
                           OperationResultHandler handler) throws Exception 

 

Description 
This operation applies the logic described in loginPullResponse operation for each subscriber in 
the bulk. 

For relevant events description, see the Pull model (on page 3-2) section in the API Events 
chapter. 
 



Chapter 5      Programming with the SCE Subscriber API 

Subscriber Provisioning Operations 
 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  5-23 
 

 

Parameters 
subsBulk—See the LoginPullResponse_BULK (on page 4-12) section. 

handler—Result handler for this operation. See the Result Handling (on page 5-15) section for 
a description of the OperationResultHandler interface. 
 

Error Codes 
The following is the list of error codes that this method might return: 

• ERROR_CODE_FATAL_EXCEPTION              

• ERROR_CODE_RESOURCE_SHORTAGE                                             

• ERROR_CODE_OPERATION_ABORTED            

• ERROR_CODE_INVALID_PARAMETER            

• ERROR_CODE_NO_APPLICATION_INSTALLED 

For a description of error codes, see List of Error Codes (on page A-1). 
 

Logout operation 

Syntax 
 

void logout(String subscriberID, 
            NetworkID networkID, 
            OperationResultHandler handler) throws Exception 

 

Description 
This operation removes the specified networkID of the subscriber from the SCE. If this is the last 
networkID of the specified subscriber, the subscriber is removed from the SCE. If no subscriber 
ID is specified, the supplied network ID is removed from the SCE regardless to which subscriber 
this network ID belongs. If no network ID is supplied, all Network IDs of this subscriber are 
removed. 

If the subscriber record is not in the SCE, the logout operation will succeed. 

For relevant events description, see the Logout Events (on page 3-3) section in the API Events 
chapter. 
 

Parameters 
subscriberID—The unique ID of the subscriber. See the Subscriber ID (on page 4-1) section 
for the subscriber ID format description. 

networkID—The network identifier of the subscriber. See the Network ID Mappings (on page 
4-2) section for more information. 

handler—Result handler for this operation. See the Result Handling (on page 5-15) section for 
a description of the OperationResultHandler interface. 
 



Chapter 5      Programming with the SCE Subscriber API 

 Subscriber Provisioning Operations 
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

5-24  OL-8236-03 
 

 

Error Codes 
The following is the list of error codes that this method might return: 

• ERROR_CODE_FATAL_EXCEPTION 

• ERROR_CODE_OPERATION_ABORTED 

For a description of error codes, see List of Error Codes (on page A-1). 
 

logoutBulk operation 

Syntax 
 

void logoutBulk(NetworkAndSubscriberID_BULK  subsBulk, 
                OperationResultHandler handler) throws Exception 

 

Description 
This operation applies the logic described in logout operation for each subscriber in the bulk. 

For relevant events description, see the Logout Events (on page 3-3) section in the API Events 
chapter. 
 

Parameters 
subsBulk—See the  NetworkAndubscriberID_BULK (on page 4-11) section. 

handler—Result handler for this operation. See the Result Handling (on page 5-15) section for 
a description of the OperationResultHandler interface. 
 

Error codes 
The following is the list of error codes that this method might return: 

• ERROR_CODE_FATAL_EXCEPTION 

• ERROR_CODE_OPERATION_ABORTED 

For a description of error codes, see List of Error Codes (on page A-1). 
 

networkIdUpdate operation 

Syntax 
 

void networkIDUpdate(String subscriberID, 
                     NetworkID networkID, 
                     boolean networkIdAdditive, 
                     OperationResultHandler handler) throws Exception 

 



Chapter 5      Programming with the SCE Subscriber API 

Subscriber Provisioning Operations 
 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  5-25 
 

 

Description 
This operation adds or replaces an existing subscriber's network ID.   

 

 
 

Note This operation is effective only if the subscriber record exists in the SCE. Otherwise, the operation will 
fail. 

For relevant events description see the Network ID Update Event (on page 3-3) section in the API 
Events chapter. 
 

Parameters 
subscriberID—The unique ID of the subscriber. See the Subscriber ID (on page 4-1) section 
for the subscriber ID format description. 

networkID—The network identifier of the subscriber. See the Network ID Mappings (on page 
4-2) section for more information. 

networkIDAdditive—If this flag is set to TRUE, the supplied NetworkID is added to the 
existing networkIDs of the subscriber. Otherwise, the supplied networkID replaces the existing 
networkIDs. 
 

Error Codes 
The following is the list of error codes that this method might return: 

• ERROR_CODE_SUBSCRIBER_NOT_EXIST              

• ERROR_CODE_FATAL_EXCEPTION              

• ERROR_CODE_RESOURCE_SHORTAGE                                             

• ERROR_CODE_OPERATION_ABORTED            

• ERROR_CODE_INVALID_PARAMETER            

• ERROR_CODE_NO_APPLICATION_INSTALLED 

For a description of error codes, see List of Error Codes (on page A-1). 
 

networkIdUpdateBulk operation 

Syntax 
 

void networkIDUpdateBulk(NetworkAndSubscriberID_BULK subsBulk, 
                         OperationResultHandler handler) throws Exception 

 

Description 
This operation applies the logic described in networkIDUpdate operation for each subscriber in 
the bulk. 

For relevant events description, see the Network ID Update Event (on page 3-3) section in the API 
Events chapter. 
 



Chapter 5      Programming with the SCE Subscriber API 

 Subscriber Provisioning Operations 
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

5-26  OL-8236-03 
 

 

Parameters 
subsBulk—See NetworkAndSubscriberID_BULK (on page 4-11) section. 

handler—Result handler for this operation. See the Result Handling (on page 5-15) section for 
a description of the OperationResultHandler interface. 
 

Error Codes 
The following is the list of error codes that this method might return: 

• ERROR_CODE_SUBSCRIBER_NOT_EXIST              

• ERROR_CODE_FATAL_EXCEPTION              

• ERROR_CODE_RESOURCE_SHORTAGE                                             

• ERROR_CODE_OPERATION_ABORTED            

• ERROR_CODE_INVALID_PARAMETER            

• ERROR_CODE_NO_APPLICATION_INSTALLED 

For a description of error codes, see List of Error Codes (on page A-1). 
 

profileUpdate operation 

Syntax 
 

void profileUpdate(String subscriberID, 
                   PolicyProfile policy, 
                   OperationResultHandler handler) throws Exception 

 

Description 
This operation modifies an existing subscriber's policy profile. If the subscriber record does not 
exist in the SCE, this operation will fail. 

For relevant events description, see the Profile Update Event (on page 3-4) in the API Events 
chapter. 
 

Parameters 
subscriberID—The unique ID of the subscriber. See the Subscriber ID (on page 4-1) section 
for the subscriber ID format description. 

policy—Policy profile of the subscriber. See the SCA BB Subscriber Policy Profile (on page 4-
4) section for more information. 

handler—Result handler for this operation. See the Result Handling (on page 5-15) section for 
a description of the OperationResultHandler interface. 
 

Error Codes 
The following is the list of error codes that this method might return: 

• ERROR_CODE_SUBSCRIBER_NOT_EXIST              



Chapter 5      Programming with the SCE Subscriber API 

Subscriber Provisioning Operations 
 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  5-27 
 

 

• ERROR_CODE_FATAL_EXCEPTION              

• ERROR_CODE_OPERATION_ABORTED            

• ERROR_CODE_INVALID_PARAMETER            

• ERROR_CODE_NO_APPLICATION_INSTALLED 

For a description of error codes, see List of Error Codes (on page A-1). 
 

profileUpdateBulk operation 

Syntax 
 

void profileUpdateBulk(PolicyProfile_BULK subsBulk, 
                       OperationResultHandler handler) throws Exception 

 

Description 
This operation applies the logic described in profileUpdate operation for each subscriber in the 
bulk. 

For relevant events description, see the Profile Update Event (on page 3-4) in the API Events 
chapter. 
 

Parameters 
subsBulk—See the PolicyProfile_BULK (on page 4-14) section. 

handler—Result handler for this operation. See the Result Handling (on page 5-15) section for 
a description of the OperationResultHandler interface. 
 

Error Codes 
The following is the list of error codes that this method might return: 

• ERROR_CODE_SUBSCRIBER_NOT_EXIST              

• ERROR_CODE_FATAL_EXCEPTION              

• ERROR_CODE_OPERATION_ABORTED            

• ERROR_CODE_INVALID_PARAMETER            

• ERROR_CODE_NO_APPLICATION_INSTALLED 

For a description of error codes, see List of Error Codes (on page A-1). 
 

quotaUpdate operation 

Syntax 
 

void quotaUpdate(String subscriberID, 
                 QuotaOperation quotaOperation, 
                 OperationResultHandler handler) throws Exception 

 



Chapter 5      Programming with the SCE Subscriber API 

 Subscriber Provisioning Operations 
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

5-28  OL-8236-03 
 

 

Description 
This operation performs an operation of updating the subscriber's quota. 

For relevant event description, see Quota Update Event (on page 3-4) in the API Events section. 
 

Parameters 
subscriberID—The unique ID of the subscriber. See the Subscriber ID (on page 4-1) section 
for the subscriber ID format description. 

quotaOperations—Quota operation to perform on the quota of the subscriber. See the 
Subscriber Quota (on page 4-5) section for more information. 

handler—Result handler for this operation. See the Result Handling (on page 5-15) section for 
a description of the OperationResultHandler interface. 
 

Error Codes 
The following is the list of error codes that this method might return: 

• ERROR_CODE_SUBSCRIBER_NOT_EXIST              

• ERROR_CODE_FATAL_EXCEPTION              

• ERROR_CODE_OPERATION_ABORTED            

• ERROR_CODE_INVALID_PARAMETER            

• ERROR_CODE_NO_APPLICATION_INSTALLED 

For a description of error codes, see List of Error Codes (on page A-1). 
 

quotaUpdateBulk operation 

Syntax 
 

void quotaUpdateBulk(QuotaOperation_BULK subsBulk, 
                     OperationResultHandler handler) throws Exception 

 

Description 
This operation applied the logic of the quotaUpdate operation on each subscriber in the bulk. 

For relevant events description, see the Quota Update Event (on page 3-4) in the API Events 
section. 
 

Parameters 
subsBulk—See the QuotaOperation_BULK (on page 4-15) section. 

handler—Result handler for this operation. See the Result Handling (on page 5-15) section for 
a description of the OperationResultHandler interface. 
 



Chapter 5      Programming with the SCE Subscriber API 

Subscriber Provisioning Operations 
 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  5-29 
 

 

Error Codes 
The following is the list of error codes that this method might return: 

• ERROR_CODE_SUBSCRIBER_NOT_EXIST              

• ERROR_CODE_FATAL_EXCEPTION              

• ERROR_CODE_OPERATION_ABORTED            

• ERROR_CODE_INVALID_PARAMETER            

• ERROR_CODE_NO_APPLICATION_INSTALLED 

For a description of error codes, see List of Error Codes (on page A-1). 
 

getQuotaStatus operation 

Syntax 
 

void getQuotaStatus(String subscriberID, 
                    Quota quota, 
                    OperationResultHandler handler) throws Exception 

 

Description 
This operation places the request to query the current remaining quota amount of the specified set 
of quota buckets. The getQuotaStatusIndication (on page 5-11) including the queried data follows 
this request (asynchronously). 

For relevant events description, see the Get Quota Status Event (on page 3-4) section in the API 
Events section. 
 

Parameters 
subscriberID—The unique ID of the subscriber. See the Subscriber ID (on page 4-1) section 
for the subscriber ID format description. 

quota—Should include the list of the names (without values) of the quota buckets to retrieve. 
See the Subscriber Quota (on page 4-5) section for more information about how to construct 
quota with buckets' names only. 

handler—Result handler for this operation. See the Result Handling (on page 5-15) section for 
a description of the OperationResultHandler interface. 
 

Error Codes 
The following is the list of error codes that this method might return: 

• ERROR_CODE_SUBSCRIBER_NOT_EXIST              

• ERROR_CODE_FATAL_EXCEPTION              

• ERROR_CODE_OPERATION_ABORTED            



Chapter 5      Programming with the SCE Subscriber API 

 Subscriber Provisioning Operations 
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

5-30  OL-8236-03 
 

 

• ERROR_CODE_INVALID_PARAMETER            

• ERROR_CODE_NO_APPLICATION_INSTALLED 

For a description of error codes, see List of Error Codes (on page A-1). 
 

getQuotaStatusBulk operation 

Syntax 
 

void getQuotaStatuBulk(Quota_BULK subsBulk, 
                       OperationResultHandler handler) throws Exception 

 

Description 
This method is a bulk version of the getQuotaStatus method described above. 

For relevant events description, see the Get Quota Status Event (on page 3-4) section in the API 
Events section. 
 

Parameters 
subsBulk—See the Quota_BULK (on page 4-14) section. 

handler—Result handler for this operation. See the Result Handling (on page 5-15) section for 
a description of the OperationResultHandler interface. 
 

Error Codes 
The following is the list of error codes that this method might return: 

• ERROR_CODE_SUBSCRIBER_NOT_EXIST              

• ERROR_CODE_FATAL_EXCEPTION              

• ERROR_CODE_OPERATION_ABORTED            

• ERROR_CODE_INVALID_PARAMETER            

• ERROR_CODE_NO_APPLICATION_INSTALLED 

For a description of error codes, see List of Error Codes (on page A-1). 
 



Chapter 5      Programming with the SCE Subscriber API 

SCE-API Synchronization 
 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  5-31 
 

 

SCE-API Synchronization 
In cases when the SCE and the Policy Server have a conflict in the data about a subscriber 
because of disconnection, loss of logon messages, or reboot, several problems can arise. These 
problems can cause a misclassification of one the subscriber's traffic as if it was another 
subscriber, enforcement of the wrong service on the subscriber's traffic, or loss of resources. 

It is possible to prevent such conflicts by keeping the communication channels as reliable as 
possible by performing synchronization of the subscribers' data between the SCE and the Policy 
Server using the API. The Policy Server, by using the API, is always the initiator of the 
synchronization. 

 

 
 

Caution Performing the synchronization process from several Policy Servers at the same time will cause the 
subscriber information in the SCE to be inconsistent with all servers. 

The following list describes the synchronization guidelines the Policy Server must adhere while 
implementing synchronization: 
 

Push model synchronization procedure 
Step 1: The Policy Server indicates to the SCE that it is starting to synchronize the SCE. 

Step 2: The Policy Server logs-in all of the subscribers the SCE should handle. Preferably, the 
login operations are performed in bulks. 

Step 3: The Policy Server notifies the SCE that the synchronization has ended. 

Step 4: The SCE removes all of the subscriber data that was not part of the synchronization 
process. 

 



Chapter 5      Programming with the SCE Subscriber API 

 SCE-API Synchronization 
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

5-32  OL-8236-03 
 

 

 

 
 

Note During the synchronization process, the regular logon operations can be performed. 

The following sections describe the methods provided for use for the synchronization procedure 
in the push model. 
 

SynchronizePushStart 

Syntax 
 

void synchronizePushStart(OperationResultHandler handler) 
 

Description 
Use this operation in the push model only to signal the SCE that synchronization with the server 
is about to begin. The SCE marks all of the subscriber data with a “dirty-bit”, which is reset if this 
data is re-applied as part of the synchronization process. Every call to this method restarts the 
synchronization process. 
 

Parameters 
handler—Result handler for this operation. See the Result Handling (on page 5-15) section for 
a description of the OperationResultHandler interface. 
 

SynchronizePushEnd 

Syntax 
 

void synchronizePushEnd(boolean success, OperationResultHandler handler) 
 

Description 
Use this operation in the push model only to signal the SCE that synchronization with the server 
has ended. The SCE scans the entire subscriber database for data with the “dirty-bit” assigned at 
SynchronizePushStart and removes it. 
 

Parameters 
success—A flag indicating that the synchronization was successful to the SCE. 

handler—Result handler for this operation. See the Result Handling (on page 5-15) section for 
a description of the OperationResultHandler interface. 
 



Chapter 5      Programming with the SCE Subscriber API 

SCE-API Synchronization 
 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  5-33 
 

 

Pull Model Synchronization Procedure 
Step 1: The Policy Server indicates to the SCE that it is starting to synchronize the SCE 

Step 2: The Policy Server retrieves from the SCE all of the subscribers IDs and network-IDs it is 
currently handling 

Step 3: The Policy Server fixes any miss-synchronization. 

Algorithm: 

Use the following algorithm template when planning the synchronization procedure: 

For each retrieved subscriber (<SubscriberID, IP address>): 

• If < SubscriberID, IP address > exists in Policy Server database, 

send a policy profile and networkID update to the SCE 

Otherwise, 

send a logout with  the Subscriber IP to the SCE 

Steps 2 and 3 are performed as a bulk at one time. 

  

 
 

Note During the synchronization process, the regular logon operations can be performed. 

The following sections describe the methods provided for use for the synchronization procedure 
in the pull model. 
 



Chapter 5      Programming with the SCE Subscriber API 

 SCE-API Synchronization 
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

5-34  OL-8236-03 
 

 

SynchronizePullStart 

Syntax 
 

void synchronizePullStart(OperationResultHandler handler) 
 

Description 
Use this operation in the pull model only to signal the SCE that synchronization with the server 
should be started. 
 

Parameters 
handler—Result handler for this operation. See the Result Handling (on page 5-15) section for 
a description of the OperationResultHandler interface. 
 

SynchronizePullEnd 

Syntax 
 

void synchronizePullEnd(boolean success, OperationResultHandler 
handler) 

 

Description 
Use this operation in the pull model only to signal the SCE that synchronization with the server 
has ended. 
 

Parameters 
handler—Result handler for this operation. See the Result Handling (on page 5-15) section for 
a description of the OperationResultHandler interface. 

success—A flag to the SCE indicating that the synchronization was successful. 
 

GetSubscribersBulk 

Syntax 
 

void getSubscribersBulk(int bulkSize, 
                        SubscribersBulkResponseIterator iterator, 
                        OperationResultHandler handler) 

 



Chapter 5      Programming with the SCE Subscriber API 

Advanced API Programming 
 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  5-35 
 

 

Description 
Use this operation in the pull model synchronization process to retrieve a bulk of subscribers the 
SCE is currently handling (see Pull Model Synchronization Procedure (on page 5-33) section). 

Upon receiving this request (getSubscribersBulk), the SCE issues asynchronously the 
getSubscribersBulkResponse indication containing subscriberIDs and corresponding 
NetworkIDs (see the LoginPullListener Interface Class (on page 5-8) section). This method 
supplies an iterator that is passed to the next call of getSubscribersBulk. To signal the end of 
iterations, the iterator of the last bulk is null. 

 

 
 

Parameters 
bulkSize—The size of the bulk to retrieve. Maximum bulk size is limited to 100 entries. 

iterator—Iterator of the subscribers at the SCE side. This iterator is received in 
getSubscribersBulkResponseIndication and it should be passed to the next call to 
getSubscribersBulk method. When calling the getSubscribersBulk method for the first time, use 
null as an iterator (using null indicates that you want to start from the beginning). 

handler—Result handler for this operation. See the Result Handling (on page 5-15) section for 
a description of the OperationResultHandler interface. 
 

Advanced API Programming 
Implementing High Availability 

High availability support provided by the API assumes that the high-availability scheme of the 
policy server is a type of two-node cluster where only one server is active at every given time. 
The other server (standby) is not connected to the SCE. 

When the active server fails, it is the responsibility of the user's two-node cluster scheme to 
perform a fail-over to the standby server. 

 

 
 

Note High-availability can be implemented separately for every policy server provisioning the SCE 
platform at the same time. 



Chapter 5      Programming with the SCE Subscriber API 

 Advanced API Programming 
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

5-36  OL-8236-03 
 

 

To implement high-availability with the SCMS SCE Subscriber API: 

 

Step 1 Set up a two-node cluster for two policy servers 

Step 2 Construct two API instances with the same API name each one on the different server (node) 
within the cluster (For constructors description, see the API Construction (on page 5-3) section). 
During cluster runtime, only one API instance should be connected to the SCE platform. When a 
fail-over occurs, the failed server should disconnect from the SCE and the standby server should 
become active and re-connect to the SCE within the pre-defined timeout (see the SCE Platform 
Setup (on page 1-6) section). Because of identical API names, the SCE will behave as if the same 
API was re-connected and no information will be lost. 

 
 

 
 

Caution Do not call the unregisterXXXListener methods implicitly in the API used on the failed policy 
server as this will cause the loss of data. Calling the disconnect() method does not unregister the 
listeners. 



Chapter 5      Programming with the SCE Subscriber API 

API Code Examples 
 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  5-37 
 

 

 
 

API Code Examples 
This section gives several code examples for the API usage: 
 

Login and Logout 
The following example logs in a predefined number of subscribers to the SCE, and then logs them 
out. This example uses auto-reconnect support; therefore, it does not define a connection listener. 

The following code outline contains a sample implementation of a result handler that counts 
success and failure results: 

 
// Class responsible for operations result handling 
import com.scms.api.sce.OperationArguments; 
import com.scms.api.sce.OperationException; 
import com.scms.api.sce.OperationResultHandler; 
 
public class MyOperationResultHandler implements OperationResultHandler 
{ 
    long count = 0; 
  
    public void handleOperationResult(Object[] result, 
                                      OperationArguments handback) 
    { 
        for (int index=0; index < result.length; index++) 
        { 
            count++;   
            if (result[index]==null) 
            { 
                //print success every 100 operations 
                //if (++count%100 == 0)  
                { 
                    System.out.println("\tsuccess "+count); 
                } 
            } 
            else // error - print every error 
            { 
                // failure 
                count++; 
                // Extract error details   
                OperationException ex = 
                                  (OperationException)result[index]; 
 
                // Extract operation name 
                String operationName = handback.getOperationName(); 
 
                // Print operation name and error message 
                System.out.println("Error for operation "+ 
                                    operationName+": "+ 
                                    ex.getMessage()); 
            }  
        } 
    } 
 



Chapter 5      Programming with the SCE Subscriber API 

 API Code Examples 
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

5-38  OL-8236-03 
 

 

    public synchronized void waitForLastResult(int lastResult) 
    { 
        while (count<lastResult)  
        { 
            try  
            { 
                wait(100); 
            }  
            catch (InterruptedException ie)  
            { 
                ie.printStackTrace(); 
            } 
        } 
    } 
} 

Class that contains simple LogoutListener implementation that counts the number of received 
logout indications: 

 
import com.scms.api.sce.LogoutListener; 
import com.scms.common.NetworkAndSubscriberID_BULK; 
import com.scms.common.SubscriberID_BULK; 
 
class MyLogoutListener implements LogoutListener 
{ 
    long count = 0; 
      
    public void logoutIndication(String subscriberID) 
    { 
        increaseCounter(1); 
    } 
  
    synchronized void increaseCounter(long value) 
    { 
        count = count + value; 
    } 
   
    synchronized long getCounter() 
    { 
        return count; 
    } 
 
    //waits for result number 'last result' to arrive 
    public synchronized void waitForLastResult(int lastResult) 
    { 
        while (count<lastResult) 
        { 
            try 
            { 
                wait(100); 
            } 
            catch (InterruptedException ie) 
            { 
                ie.printStackTrace(); 
            } 
        } 
    } 
  
    public void logoutBulkIndication(SubscriberID_BULK subs) 
    { 
        increaseCounter(subs.getSize());   
    } 
} 



Chapter 5      Programming with the SCE Subscriber API 

API Code Examples 
 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  5-39 
 

 

 Class that contains the main method: 
 

import com.scms.api.sce.prpc.PRPC_SCESubscriberApi; 
import com.scms.common.*; 
 
public class LogonPolicyServer { 
 
    public static void main (String args[]) throws Exception 
    { 
        int numSubscribersToLogin = 500; 
 
        //instantiate an API with reconnect interval of 5 seconds 
        PRPC_SCESubscriberApi api = new PRPC_SCESubscriberApi( 
                                                "myAPI", 
                                                args[0], // IP of the SCE 
                                                5000); 
        try { 
            // instantiate operation result handler 
            // we will use one handler for all operations 
            MyOperationResultHandler resultHandler = 
                                         new MyOperationResultHandler(); 
 
            // instantiate logout listener 
            MyLogoutListener listener = new MyLogoutListener(); 
 
            // register to logout indications 
            api.registerLogoutListener(listener);  
 
            // connect to the SCE 
            api.connect(); 
 
            //login 
            System.out.println("login of "+numSubscribersToLogin+ 
                                                  " subscribers"); 
 
            PolicyProfile pp = new PolicyProfile( 
                                               new String[]{"packageId=1", 
                                               "monitor=1"}); 
 
            for (int i=0; i<numSubscribersToLogin; i++)  
            { 
                api.login("sub"+i, 
                          new NetworkID(getMappings(i), // generate ip 
                          NetworkID.ALL_IP_MAPPINGS), 
                          true, // additive flag 
                          pp,  // policy 
                          null, // no quota 
                          resultHandler); 
            } 
            // wait for subscribers to log in 
            resultHandler.waitForLastResult(numSubscribersToLogin); 
 
            //logout all subscribers 
            System.out.println("logout of "+numSubscribersToLogin+ 
                                                  " subscribers"); 
 
            for (int i=0; i<numSubscribersToLogin; i++)  
            { 
                NetworkID nid = new NetworkID(getMappings(i), 
                                              NetworkID.ALL_IP_MAPPINGS); 
 
                api.logout("sub"+i,nid,resultHandler); 



Chapter 5      Programming with the SCE Subscriber API 

 API Code Examples 
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

5-40  OL-8236-03 
 

 

            } 
 
            // wait for all subscribers to be logged out -  
            //but this time use 
            //logout listener to count the results 
            listener.waitForLastResult(numSubscribersToLogin); 
        } 
        finally  
        { 
            api.unregisterLogoutListener 
            api.disconnect(); 
        } 
    } 
 
    //'automatic' mapping generator for the sample program 
    private static String[] getMappings(int i) { 
        return new String[]{ "10." +((int)i/65536)%256 + "." + 
            ((int)(i/256))%256 + "." + (i%256)}; 
    } 
} 

 



Chapter 5      Programming with the SCE Subscriber API 

API Code Examples 
 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  5-41 
 

 

Login-pull request and login-pull response 
The following code fragment demonstrates a login-pull request and login-pull response 
manipulations: 

This class is a sample implementation of the listener for the logout and login pull indications: 
 

import java.util.Iterator; 
 
// result handler from the previous example 
import MyOperationResultHandler;  
 
import com.scms.api.sce.*; 
import com.scms.common.*; 
 
class MyListener implements LoginPullListener, LogoutListener 
{ 
    // indications counters 
    long logoutCount = 0; 
    long pullCount=0; 
 
    // api instance – used to send login-pull responses to the SCE 
    PRPC_SCESubscriberApi api = null; 
     
    // construct operation handler - 
    // from previous (Login and Logout) example 
    MyOperationResultHandler h = new MyOperationResultHandler(); 
 
    public MyListener(PRPC_SCESubscriberApi api) 
    { 
        this.api = api; 
    } 
 
    // Increase logout counter     
    public void logoutIndication(String subscriberID) 
    { 
        increaseLogoutCounter(1); 
        System.out.println("Got logout notification " + 
                            getLogoutCounter());         
    } 
 
    // Increase logout counter 
    public void logoutBulkIndication(SubscriberID BULK subs) 
    { 
        System.out.println("Got logout notification"); 
        increaseLogoutCounter(subs.getSize()); 
    } 
 



Chapter 5      Programming with the SCE Subscriber API 

 API Code Examples 
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

5-42  OL-8236-03 
 

 

    public void loginPullRequest (String anonymousSubscriberID, 
                                  NetworkID networkID) 
    { 
        try 
        { 
            increasePullCounter(1); 
            System.out.println("Got pull request" + getPullCounter()); 
      
            // prepare policy 
            PolicyProfile pp = new PolicyProfile( 
                                              new String[]{"packageId=1", 
                                              "monitor=1"}); 
 
            // Answer with pull response 
            // retrieve subscriber name – for example from your 
            // policy server database 
            // In this example we use fixed names based on the 
            // subscribers counter 
            api.loginPullResponse(anonymousSubscriberID, 
                                   "sub"+getPullCounter(), 
                                   networkID, 
                                   pp,  // policy 
                                   null, // no quota 
                                   h); // handler from previous example 
        } 
        catch (Exception ex) 
        { 
            System.out.println(ex.getMessage()); 
        } 
    } 
 
    public void loginPullRequestBulk(NetworkAndSubscriberID BULK subs) 
    { 
        try 
        { 
            increasePullCounter(subs.getSize()); 
            System.out.println("Got pull request" + getPullCounter()); 
            // Answer with pull response in bulk form 
            PolicyProfile pp = new PolicyProfile( 
                                            new String[]{"packageId=1", 
                                            "monitor=1"}); 
 
            LoginPullResponse_BULK responseBulk = 
                                           new LoginPullResponse_BULK(); 
 
            Iterator subsIterator = subs.getIterator(); 
 
            // iterate of the received bulk (IPs and anonymous IDs) 
            // and build a response bulk 
            int count=0; 
            while(subsIterator.hasNext()) 
            { 
                // retrieve subscriber name – for example from your 
                // policy server database 
                // In this example we use fixed names based on the 
                // subscribers counter 
                String subName = "sub_"+count; 
 
                SubscriberData sub = (SubscriberData)subsIterator.next(); 
 
                // Extract subscriber mappings from the bulk and 
                // constract a new NetworkID based on those mappings 



Chapter 5      Programming with the SCE Subscriber API 

API Code Examples 
 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  5-43 
 

 

                NetworkID subNetId = new NetworkID(sub.getMappings(), 
                                            NetworkID.ALL_IP_MAPPINGS); 
 
                responseBulk.addEntry(sub.getAnonymousSubscriberID(), 
                                      subName, 
                                      subNetId, 
                                      true, 
                                      pp, 
                                      null); 
                count++; 
            } 
 
            //use the bulk constructed above in the bulk response  
            //use handler from the previous example 
            api.loginPullBulkResponse(responseBulk,h);  
        } 
        catch (Exception ex) 
        { 
            System.out.println(ex.getMessage()); 
        } 
    } 
 
    public void getSubscribersBulkResponse( 
                        NetworkAndSubscriberID BULK subs, 
                        SubscruberBulkResponseIterator iterator) 
    { 
        //  not implemented in this example 
    } 
  
    synchronized void increaseLogoutCounter(long value) 
    { 
        logoutCount = logoutCount + value; 
    } 
 
    synchronized void increasePullCounter(long value) 
    { 
        pullCount = pullCount + value; 
    } 
 
    synchronized long getPullCounter() 
    { 
        return pullCount; 
    } 
 
    synchronized long getLogoutCounter() 
    { 
        return logoutCount; 
    } 
 



Chapter 5      Programming with the SCE Subscriber API 

 API Code Examples 
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

5-44  OL-8236-03 
 

 

    //waits for result number 'last result' to arrive 
    public synchronized void waitForPullResult(int lastResult) { 
        while (pullCount<lastResult) { 
            try { 
                wait(100); 
            } catch (InterruptedException ie) { 
                ie.printStackTrace(); 
            } 
        } 
    } 
 
    public synchronized void waitForLogoutResult(int lastResult) { 
        while (logoutCount<lastResult) { 
           try { 
                wait(100); 
            } catch (catch (InterruptedException ie) { 
                ie.printStackTrace(); 
            } 
        } 
    } 
} 



Chapter 5      Programming with the SCE Subscriber API 

API Code Examples 
 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  5-45 
 

 

Class that contains the main method: 
 

import java.util.Iterator; 
 
import com.scms.api.sce.*; 
import com.scms.common.*; 
 
public class LogonPolicyServer { 
    static PRPC_SCESubscriberApi api = null; 
    
    // This sample program waits for pull requests from the SCE 
    // and answers to them with pull response 
    // The program exists after all 500 were logged in    
    public static void main (String args[]) throws Exception 
    { 
        int numSubscribersToLogin = 500; 
 
        //instantiate an API with reconnect interval of 5 seconds 
        api = new PRPC_SCESubscriberApi("myAPI","1.1.1.1",5000); 
 
        // construct an operation result handler (from the 
        // previous example 
        MyOperationResultHandler handler =  
                                          new MyOperationResultHandler(); 
               
        // instantiate logout and login-pull listener 
        MyListener listener = new MyListener(api); 
 
        try 
        { 
            // register to logout indications 
            api.registerLogoutListener(listener); 
            api.registerLoginPullListener(listener); 
 
            // connect to the SCE 
            api.connect(); 
             
            // wait for login-pull requests from the SCE 
            // they will be issued if you have traffic for unknown 
            // subscribers at the SCE 
 
            System.out.println("Waiting for pull requests for "+ 
                                                 numSubscribersToLogin+ 
                                                " subscribers"); 
 
            // wait for all subscribers to be logged in 
            listener.waitForPullResult(numSubscribersToLogin); 
 
            //logout all subscribers 
            System.out.println("logout of "+numSubscribersToLogin+ 
                                                       " subscribers"); 
 
            for (int i=0; i<numSubscribersToLogin; i++) 
            { 
                api.logout("sub"+i,null,handler); 
            } 
 
            // wait for all subscribers to be logged out 
            listener.waitForLogoutResult(numSubscribersToLogin); 
        } 
        finally 
        { 



Chapter 5      Programming with the SCE Subscriber API 

 API Code Examples 
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

5-46  OL-8236-03 
 

 

            api.unregisterLoginPullListener(); 
            api.unregisterLogoutListener(); 
            api.disconnect(); 
        } 
    } 
} 

 



 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  6-1 
 

 

This chapter describes the usage of the API logging abilities for troubleshooting the integration 
with the API. API logging enables the user to monitor the operations being called including the 
received parameters both at the API client and at the SCE side. 

This chapter contains the following sections: 

• SCE Logging 6-1 

• API Client Logging 6-5 
 
 

SCE Logging 
The SCE platform provides the ability to log all of the operations called by the Policy Server into 
the SCE user-log file. 
 

Default Log Messages 
The SCE issues the following messages by default without any further configuration: 

For connect operation: 
 

<client-name> - connect operation was called, registered listeners: <type 
of the listeners that were registered> 

For disconnect operation: 
 

<client-name> - disconnected 

For registerLoginPullListener operation: 
 

<client-name> - registered a Login Pull Listener 

For unregisterPullListener operation: 
 

<client-name> - unregistered a Pull Listener 

For registerLogoutListener operation: 
 

<client-name> - registered a Logout Listener 

For unregisterLogoutListener operation: 
 

<client-name> - unregistered a Logout Listener 

C H A P T E R  6  

Troubleshooting 



Chapter 6      Troubleshooting 

 SCE Logging 
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

6-2  OL-8236-03 
 

 

For registerQuotaListener operation: 
 

<client-name> - registered Quota Listener 

For unregisterQuotaListener operation: 
 

<client-name> - unregister Quota Listener 

For synchronizePushStart operation: 
 

<client-name> - synchronize Push Start 

For synchronizePushEnd operation: 
 

<client-name> - synchronize Push End 

For synchronizePullStart operation: 
 

<client-name> - synchronize Pull Start 

For synchronizePullEnd operation: 
 

<client-name> - synchronize Pull End 
 

Subscriber Operations Log messages 
A special flag activates subscriber operation log messages. To receive these messages, enable the 
flag. 

To enable logging, use the following CLI at the SCE platform: 
(config)# management-agent sce-api logging 

To view the USERLOG file, use the following CLI at the SCE platform: 
#>logger get user-log <FILE NAME> 

 

 
 

Note Enabling logging causes performance degradation. Therefore, it is advisable to use logging only for 
troubleshooting purposes. 

To disable logging, use the following CLI at the SCE platform: 
(config)#> no management-agent sce-api logging 

To view whether the logging is enabled, use the following CLI at the SCE platform: 
#> show management-agent sce-api 

When the logging flag is enabled, the message below is issued for the following operations: 

• login operation 

• networkIDUpdate operation 

• logout operation 

• quotaUpdate operation 

• loginPullResponse operation 

• profileUpdate operation 

• getQuotaStatus operation 



Chapter 6      Troubleshooting 

SCE Logging 
 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  6-3 
 

 

 
<operation name> operation was called  
with parameters: 
subscriberID - <subscriber ID> anonymousSubscriberID - < 
anonymousSubscriberID >  
mappings - <mappings list>  
mappings types - <mapping types list>  
policy - <policy properties list>  
quota - <quota operation/quota buckets list> 

For the following bulk operations: 

• loginBulk operation 

• networkIDUpdateBulk operation 

• logoutBulk operation 

• quotaUpdateBulk operation 

• loginPullBulkResponse operation 

• profileUpdateBulk operation 

• getQuotaStatuBulkRequest operation 

• getSubscribersBulk 

The following message is issued: 
 

<operation name> operation was called with parameters: 
bulk size - <bulk size>  

 

The following messages are issued for the LoginPullListener: 

• For loginPullRequest: 
 

loginPullRequest operation was called with parameters: 
anonymousSubscriberID - <anonymous subscriber ID>  
mappings - <mappings list>  
mapping types - <mapping types> 

• For loginPullRequestBulk: 
 

loginPullRequestBulk operation was called with parameters: 
bulk size - <bulk size> 

• getSubscribersBulkResponse 
 

getSubscribersBulkResponse operation was called with parameters: 
bulk size - <bulk size> 

 

The following messages are issued for the LogoutListener: 

• For logoutIndication: 
 

logoutIndication operation was called with parameters: 
subscriberID - <anonymous subscriber ID> 

• For logoutBulkIndication: 
 

logoutBulkIndication operation was called with parameters: 
bulk size - <bulk size> 

 



Chapter 6      Troubleshooting 

 SCE Logging 
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

6-4  OL-8236-03 
 

 

The following messages are issued for the QuotaListenerEx: 

• For quotaStatusIndication: 
 

quotaStatusIndication operation was called with parameters: 
subscriberID - <Subscriber ID> 
quota - <subscriber quota> 

• For quotaBelowThresholdIndication: 
 

quotaBelowThresholdIndication operation was called with parameters: 
subscriberID - <Subscriber ID> 
quota - <subscriber quota> 

• For quotaDepletedIndication: 
 

quotaDepletedIndication operation was called with parameters: 
subscriberID - <Subscriber ID> 
quota - <subscriber quota> 

• For quotaStateRestore: 
 

quotaStateRestore operation was called with parameters: 
subscriberID - <Subscriber ID> 
quota - <subscriber quota> 

• For quotaStatusBulkIndication: 
 

quotaStatusBulkIndication operation was called with parameters: 
subs - <bulk size> 

• For quotaBelowThresholdBulkIndication: 
 

quotaBelowThresholdBulkIndication operation was called with parameters: 
subs - <bulk size> 

• For quotaDepletedBulkIndication: 
 

quotaDepletedBulkIndication operation was called with parameters: 
subs - <bulk size> 

• For quotaStateBulkRestore: 
 

quotaStateBulkRestore operation was called with parameters: 
subs - <bulk size> 

 



Chapter 6      Troubleshooting 

API Client Logging 
 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  6-5 
 

 

API Client Logging 
The API provides the ability to log every activated operation into the apilog file located under 
${user.home} directory. The logging parameters are configured using the Log4J properties files. 
To enable the logging make sure this file is in the application's CLASSPATH. This file is read at 
startup of the application so after changing it you must restart the application. 

The following is the content of the log4.properies file: 
 

# default Log4j configuration for SCE Subscriber API 
 log4j.rootCategory=INFO, apiStdout 
 
# In order to enable the logging to the file Replace the above  
# line with the following:  
# log4j.rootCategory=INFO, files 
 
# stdout is set to be a ConsoleAppender.  
 
log4j.appender.apiStdout=org.apache.log4j.ConsoleAppender 
log4j.appender.apiStdout.layout=org.apache.log4j.PatternLayout 
log4j.appender.apiStdout.layout.ConversionPattern=+ %d{dd-MMM HH:mm:ss.SSS} 
[%t] %-5p %c%n%m%n 
 
# files is set to be a RollingFileAppender.  
 
#log4j.appender.files=org.apache.log4j.RollingFileAppender 
#log4j.appender.files.layout=org.apache.log4j.PatternLayout 
#log4j.appender.files.layout.ConversionPattern=+ %d{dd-MMM yyyy 
HH:mm:ss.SSS} [%t] %-5p %c %x\n%m\n 
 
#log4j.appender.files.File=${user.home}/apilog 
#log4j.appender.files.Threshold=INFO 
#log4j.appender.files.ImmediateFlush=true 
#log4j.appender.files.MaxFileSize=1MB 
#log4j.appender.files.MaxBackupIndex=4 
 
# In order to enable debug logging uncomment the following line 
#log4j.category.com.scms.api.sce.prpc=DEBUG 

To enable the debug logging, uncomment the last line in the file. By default, the logging is 
performed to the standard output. To direct the logging to the file, uncomment the # 
log4j.rootCategory=INFO, files line as explained in the file. 
 

API Client Log messages 
The API client issues the following messages after properly configuring the 
log4j.properties file: 

• For API constructor: 
 

"PRPC_SCESubscriberApi constructor was called with the following 
parameters: 
apiName - <apiName>  
host - <sceHost>  
port - <scePort>  
auto-reconnect - <autoReconnectInterval> 



Chapter 6      Troubleshooting 

 API Client Logging 
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

6-6  OL-8236-03 
 

 

• For init operation: 
 

init operation was called with parameters <properties> 

• For setConnectionListener: 
 

setConnectionListener operation was called 

• For isConnected: 
 

isConnected operation was called 

• For getAPIVersion: 
 

getAPIVersion operation was called 

 

For the following operations: 

• login operation 

• networkIDUpdate operation 

• logout operation 

• quotaUpdate operation 

• loginPullResponse operation 

• profileUpdate operation 

• getQuotaStatus operation 

The following message is issued: 
 

<operation name> operation was called with parameters: 
subscriberID - <subscriber ID>  
anonymousSubscriberID - < anonymousSubscriberID >  
mappings - <mappings list>  
mappings types - <mapping types list>  
policy - <policy properties list>  
quota - <quota operation/quota buckets list> 

 

For the following bulk operations: 

• loginBulk operation 

• networkIDUpdateBulk operation 

• logoutBulk operation 

• quotaUpdateBulk operation 

• loginPullBulkResponse operation 

• profileUpdateBulk operation 



Chapter 6      Troubleshooting 

API Client Logging 
 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  6-7 
 

 

• getQuotaStatuBulkRequest operation 

• getSubscribersBulk operation 

The following message is issued: 
 

<operation name> operation was called with parameters: 
bulk size - <bulk size>  

• For connect operation: 
 

connect operation was called, registered listeners: 
<type of the listeners that were registered> 

• For disconnect operation: 
 

disconnect operation was called 

• For registerLoginPullListener operation: 
 

registerLoginPullListener operation was called 

• For unregisterPullListener operation: 
 

unregisterPullListener operation was called 

• For registerLogoutListener operation: 
 

registerLogoutListener operation was called 

• For unregisterLogoutListener operation: 
 

unregisterLogoutListener operation was called 

• For registerQuotaListener operation: 
 

registerQuotaListener operation was called 

• For unregisterQuotaListener operation: 
 

unregisterQuotaListener operation was called 

• For synchronizePushStart operation: 
 

synchronizePushStart operation was called 

• For synchronizePushEnd operation: 
 

synchronizePushEnd operation was called 

• For synchronizePullStart operation: 
 

synchronizePullStart operation was called 

• For synchronizePullEnd operation: 
 

synchronizePullEnd operation was called 

 



Chapter 6      Troubleshooting 

 API Client Logging 
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

6-8  OL-8236-03 
 

 

The following messages are issued for the LoginPullListener 
listener callback methods: 

• For loginPullRequest: 
 

loginPullRequest operation was called with parameters: 
anonymousSubscriberID - <anonymous subscriber ID>  
mappings - <mappings list>  
mapping types - <mapping types> 

• For loginPullRequestBulk: 
 

loginPullRequestBulk operation was called with parameters: 
bulk size - <bulk size> 

• getSubscribersBulkResponse 
 

getSubscribersBulkResponse operation was called with parameters: 
bulk size - <bulk size> 

 

The following messages are issued for the LogoutListener listener 
callback methods: 

• For logoutIndication: 
 

logoutIndication operation was called with parameters: 
subscriberID - <anonymous subscriber ID> 

• For logoutBulkIndication: 
 

logoutBulkIndication operation was called with parameters: 
bulk size - <bulk size> 

 

The following messages are issued for the QuotaListenerEx 
listener callback methods: 

• For quotaStatusIndication: 
 

quotaStatusIndication operation was called with parameters: 
subscriberID - <Subscriber ID> 
quota - <subscriber quota> 

• For quotaBelowThresholdIndication: 
 

quotaBelowThresholdIndication operation was called with parameters: 
subscriberID - <Subscriber ID> 
quota - <subscriber quota> 

• For quotaDepletedIndication: 
 

quotaDepletedIndication operation was called with parameters: 
subscriberID - <Subscriber ID> 
quota - <subscriber quota> 

• For quotaStateRestore: 
 

quotaStateRestore operation was called with parameters: 
subscriberID - <Subscriber ID> 
quota - <subscriber quota> 



Chapter 6      Troubleshooting 

API Client Logging 
 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  6-9 
 

 

• For quotaStatusBulkIndication: 
 

quotaStatusBulkIndication operation was called with parameters: 
subs - <bulk size> 

• For quotaBelowThresholdBulkIndication: 
 

quotaBelowThresholdBulkIndication operation was called with parameters:  
subs - <bulk size> 

• For quotaDepletedBulkIndication: 
 

quotaDepletedBulkIndication operation was called with parameters: 
subs - <bulk size> 

• For quotaStateBulkRestore: 
 

quotaStateBulkRestore operation was called with parameters: 
subs - <bulk size> 

 





 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  A-1 
 

 

Error codes are used for interpreting the actual error for which an OperationException was 
returned. The error code is extracted using the getErrorCode method. 

A list of the error codes and their description are given in the following table. 

Table  A-1 List of Error Codes 

Error Code Description 

ERROR_CODE_NO_APPLICATION_INSTALLED Application required for the operation 
execution is not installed 

ERROR_CODE_INVALID_PARAMETER One of the arguments provided to the method 
is illegal. 

ERROR_CODE_SUSBSCRIBER_ALREADY_EXISTS The subscriber on which the operation was 
performed already exists in the SCE. 

ERROR_CODE_SUBSCRIBER_DOES_NOT_EXIST The subscriber on which the operation is 
performed does not exist in the SCE . 

ERROR_CODE_FATAL_EXCEPTION Too many errors occurred at the SCE when 
trying to perform the operation 

ERROR_CODE_RESOURCE_SHORTAGE Internal error 

ERROR_CODE_OPERATION_ABORTED Internal error 

ERROR_CODE_ARRAY_ACCESS Internal error. 

ERROR_CODE_ATTRIBUTE_NOT_FOUND Internal error. 

ERROR_CODE_CLASS_CAST Internal error. 

ERROR_CODE_CLASS_NOT_FOUND Internal error. 

ERROR_CODE_CLIENT_INTERNAL_ERROR Internal error. 

ERROR_CODE_CLIENT_OUT_OF_THREADS Internal error. 

ERROR_CODE_ILLEGAL_STATE Internal error. 

ERROR_CODE_OBJECT_NOT_FOUND Internal error. 

ERROR_CODE_OPERATION_NOT_FOUND Internal error. 

ERROR_CODE_OUT_OF_MEMORY Internal error. 

ERROR_CODE_RUNTIME Internal error. 

A P P E N D I X  A  

List of Error Codes 



Appendix A      List of Error Codes 

  
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

A-2  OL-8236-03 
 

 

Error Code Description 

ERROR_CODE_NULL_POINTER Internal error. 

ERROR_CODE_UNKNOWN Internal error. 
 

 



 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  I-1 
 

 

A 
addBulkEntry Method • 4-9, 4-11, 4-12, 4-

13, 4-14, 4-15, 4-16 
Advanced API Programming • 5-35 
Advanced Setup Operations • 5-5 
Anonymous Subscriber ID • 2-2 
API classes summary • 5-1 
API Client Log messages • 6-5 
API Client Logging • 6-5 
API Code Examples • 5-37 
API Construction • 5-3 
API Events • 3-1 
API Finalization • 5-7 
Audience • v 
Auto-reconnect Support • 2-6 

B 
Backward Compatibility with previous 

versions • 1-4 
Bulk Iterator • 4-8 
Bulk Operations Data Types • 4-7 

C 
Cisco.com • ix 
Compiling and Running • 1-3 
Concepts and Terms • 2-1 
Configuring API Disconnection Timeout • 

1-6 
Configuring the SCE in Pull Mode • 1-5 
Connecting to the SCE • 5-6 
Connection Monitoring • 5-2, 5-14 
ConnectionListener Interface • 5-14 
Constructor • 4-8 
Constructors • 4-11, 4-12, 4-14, 4-15 
Contacting TAC by Telephone • x 
Contacting TAC by Using the Cisco TAC 

Website • ix 

Conventions • vi 

D 
Default Log Messages • 6-1 
Description • 5-6, 5-19, 5-21, 5-22, 5-23, 5-

24, 5-25, 5-26, 5-27, 5-28, 5-29, 5-30, 5-
32, 5-34, 5-35 

Document Revision History • v 
Documentation CD-ROM • viii 
Documentation Feedback • viii 

E 
End Synchronization Event • 3-6 
Error codes • 5-24 
Error Codes • 5-20, 5-21, 5-22, 5-23, 5-24, 

5-25, 5-26, 5-27, 5-28, 5-29, 5-30 
Example • 5-6, 5-14 
Examples • 4-10, 5-17, 5-20 
Extracting the Package • 1-2 

G 
Get Quota Status Event • 3-4 
Get Subscribers Events • 3-6 
getApiVersion • 5-6 
getQuotaStatus operation • 5-29 
getQuotaStatusBulk operation • 5-30 
GetSubscribersBulk • 5-34 
GetSubscribersBulkResponse callback 

method • 5-9 
Getting Familiar with the API Data Types • 

4-1 
Getting Started • 1-1 

H 
High Availability Support • 2-6 

I 
Implementing High Availability • 5-35 

Index 



58.  

 Index 
 

  Cisco SCMS SCE Subscriber API Programmer Guide 

I-2  OL-8236-03 
 

 

Indications Listeners • 2-3, 5-1, 5-7 
Installation • 1-2 
Introduction • 1-1 

L 
List of Error Codes • A-1 
Listeners Setup Operations • 5-4 
Login and Logout • 5-37 
Login Events • 3-2 
login operation • 5-19 
Login_BULK Class • 4-8 
loginBulk operation • 5-21 
Login-pull request and login-pull response • 

5-41 
LoginPullListener Interface Class • 5-8 
loginPullRequest callback method • 5-9 
loginPullRequestBulk callback method • 5-9 
loginPullResponse operation • 5-21 
LoginPullResponse_BULK Class • 4-12 
loginPullResponseBulk operation • 5-22 
Logout Events • 3-3 
Logout operation • 5-23 
logoutBulk operation • 5-24 
logoutBulkIndication callback method • 5-

10 
logoutIndication callback method • 5-10 
LogoutListener Interface Class • 5-10 

M 
Multi-threading Support • 2-6 

N 
Network ID • 2-2 
Network ID Management Events • 3-2 
Network ID Mappings • 4-2 
Network ID Mappings Examples • 4-3 
Network ID Update Event • 3-3 
NetworkAndSubscriberID_BULK Class • 4-

11 
networkIdUpdate operation • 5-24 
networkIdUpdateBulk operation • 5-25 
Non-blocking Model • 2-3 

O 
Obtaining Documentation • vii 
Obtaining Technical Assistance • viii 
Operation Errors • 5-18 
OperationArguments class • 5-16 
OperationException Class • 5-18 
OperationResultHandler Interface • 5-15 

Operations Result Handling • 5-2 
Ordering Documentation • viii 
Organization • vi 
Overview • 3-1 

P 
Package com.scms.api.sce • 5-1 
Package com.scms.api.sce.prpc • 5-1 
Package com.scms.common • 5-2 
Package Content • 1-3 
Parameters • 4-9, 4-11, 4-12, 4-13, 4-14, 4-

15, 4-16, 5-5, 5-9, 5-10, 5-11, 5-12, 5-13, 
5-20, 5-21, 5-22, 5-23, 5-24, 5-25, 5-26, 
5-27, 5-28, 5-29, 5-30, 5-32, 5-34, 5-35 

Platforms • 1-2 
Policy Profile • 2-2 
Policy Profile Management Events • 3-4 
PolicyProfile Class • 4-4 
PolicyProfile_BULK Class • 4-14 
Practical Tips • 2-7 
Preface • v 
Profile Update Event • 3-4 
profileUpdate operation • 5-26 
profileUpdateBulk operation • 5-27 
Programming Guidelines • 5-2 
Programming with callback methods • 5-2 
Programming with the SCE Subscriber API 

• 5-1 
PRPC Server • 1-4 
PRPC_SCESubscriberApi class • 5-3 
Pull Model • 2-2, 3-2 
Pull Model Synchronization Procedure • 5-

33 
Push Model • 2-2, 3-2 
Push model synchronization procedure • 5-

31 

Q 
Quota • 2-2 
Quota Below Threshold Event • 3-5 
Quota Depleted Event • 3-5 
Quota Management Events • 3-4 
Quota State Restore Event • 3-5 
Quota Status Event • 3-5 
Quota Update Event • 3-4 
Quota_BULK Class • 4-14 
quotaBelowThresholdIBulkndication 

callback method • 5-12 
quotaBelowThresholdIndication callback 

method • 5-12 



62.  

Index 
 

Cisco SCMS SCE Subscriber API Programmer Guide   

OL-8236-03  I-3 
 

 

quotaDepletedBulkIndication callback 
method • 5-13 

quotaDepletedIndication callback method • 
5-12 

QuotaListenerEx Interface Class • 5-10 
QuotaOperation_BULK Class • 4-15 
quotaStateBulkRestore callback method • 5-

13 
quotaStateRestore callback method • 5-13 
quotaStatusBulkIndication callback method 

• 5-12 
quotaStatusIndication callback method • 5-

11 
quotaUpdate operation • 5-27 
quotaUpdateBulk operation • 5-28 

R 
RDR Formatter Configuration • 1-5 
RDR Server Configuration • 1-6 
Related Publications • vi 
Reliability Support • 2-6 
Result Handling • 5-15 

S 
SCA BB Subscriber Policy Profile • 4-4 
SCAS_BB_Quota • 4-6 
SCAS_BB_QuotaOperation • 4-7 
SCE Logging • 6-1 
SCE platform setup • 1-4 
SCE Synchronization Procedure Events • 3-

5 
SCE-API Synchronization • 5-31 
Specifying IP Address Mapping • 4-2 
Specifying IP Range Mapping • 4-3 
Specifying VLAN Tag Mapping • 4-3 
Start Synchronization Event • 3-5 
Subscriber Characteristics • 2-1 
Subscriber ID • 2-1, 4-1 
Subscriber Integration Models • 2-2 
Subscriber Operations Log messages • 6-2 
Subscriber Provisioning Operations • 5-19 
Subscriber Quota • 4-5 
SubscriberData • 4-8 
SubscriberID_BULK Class • 4-10 
Supported Topologies • 2-4 
Synchronization • 2-7 
SynchronizePullEnd • 5-34 
SynchronizePullStart • 5-34 
SynchronizePushEnd • 5-32 
SynchronizePushStart • 5-32 

Syntax • 5-5, 5-6, 5-19, 5-21, 5-22, 5-23, 5-
24, 5-25, 5-26, 5-27, 5-28, 5-29, 5-30, 5-
32, 5-34 

T 
Technical Assistance Center • ix 
technical assistance, obtaining • viii 
Troubleshooting • 6-1 

W 
World Wide Web • vii 
 
 
 


	Cisco SCMS SCE Subscriber API Programmer Guide
	Preface
	Document Revision History
	Audience
	Organization
	Related Publications
	Conventions
	Obtaining Documentation
	World Wide Web
	Documentation CD-ROM
	Ordering Documentation
	Documentation Feedback

	Obtaining Technical Assistance
	Cisco.com
	Technical Assistance Center


	1. Getting Started
	Introduction
	Platforms
	Installation
	Extracting the Package

	Compiling and Running
	Backward Compatibility with previous versions
	SCE platform setup
	PRPC Server
	Configuring the SCE in Pull Mode
	RDR Formatter Configuration
	RDR Server Configuration
	Configuring API Disconnection Timeout


	2. Concepts and Terms
	Subscriber Characteristics
	Subscriber ID
	Anonymous Subscriber ID
	Network ID
	Policy Profile
	Quota

	Subscriber Integration Models
	Push Model
	Pull Model

	Non-blocking Model
	Indications Listeners
	Supported Topologies
	Multi-threading Support
	Auto-reconnect Support
	Reliability Support
	High Availability Support
	Synchronization
	Practical Tips

	3. API Events
	Overview
	Network ID Management Events
	Policy Profile Management Events
	Quota Management Events
	SCE Synchronization Procedure Events


	4. Getting Familiar with the API Data Types
	Subscriber ID
	Network ID Mappings
	Specifying IP Address Mapping
	Specifying IP Range Mapping
	Specifying VLAN Tag Mapping
	Network ID Mappings Examples

	SCA BB Subscriber Policy Profile
	PolicyProfile Class

	Subscriber Quota
	SCAS_BB_Quota
	SCAS_BB_QuotaOperation

	Bulk Operations Data Types
	Bulk Iterator
	Login_BULK Class
	SubscriberID_BULK Class
	NetworkAndSubscriberID_BULK Class
	LoginPullResponse_BULK Class
	PolicyProfile_BULK Class
	Quota_BULK Class
	QuotaOperation_BULK Class


	5. Programming with the SCE Subscriber API
	API classes summary
	Package com.scms.api.sce.prpc
	Package com.scms.api.sce
	Package com.scms.common

	Programming Guidelines
	Programming with callback methods

	PRPC_SCESubscriberApi class
	API Construction

	Indications Listeners
	LoginPullListener Interface Class
	LogoutListener Interface Class
	QuotaListenerEx Interface Class

	Connection Monitoring
	ConnectionListener Interface
	Example

	Result Handling
	OperationResultHandler Interface

	Subscriber Provisioning Operations
	login operation
	loginBulk operation
	loginPullResponse operation
	loginPullResponseBulk operation
	Logout operation
	logoutBulk operation
	networkIdUpdate operation
	networkIdUpdateBulk operation
	profileUpdate operation
	profileUpdateBulk operation
	quotaUpdate operation
	quotaUpdateBulk operation
	getQuotaStatus operation
	getQuotaStatusBulk operation

	SCE-API Synchronization
	Push model synchronization procedure
	Pull Model Synchronization Procedure

	Advanced API Programming
	Implementing High Availability

	API Code Examples
	Login and Logout
	Login-pull request and login-pull response


	6. Troubleshooting
	SCE Logging
	Default Log Messages
	Subscriber Operations Log messages

	API Client Logging
	API Client Log messages


	A. List of Error Codes
	Index


