
1

Cisco ICM Web Option:
 Trailhead Configuration and

 Administration Guide

Cisco Trailhead, Version 4.0

2

Cisco Trailhead, Version 4.0
Copyright © 2000, Cisco Systems, Inc., all rights reserved.

Access Registrar, AccessPath, Are You Ready, ATM Director, Browse with Me, CCDA, CCDE,
CCDP,CCIE, CCNA, CCNP, CCSI, CD-PAC, CiscoLink, the Cisco NetWorks logo, Cisco Powered
Network logo, Cisco Systems Networking Academy, Fast Step, FireRunner, Follow Me Browsing,
FormShare, GigaStack, IGX, Intelligence in the Optical Core, Internet Quotient, IP/VC, iQ Breakthrough,
iQ Expertise, iQ FastTrack, iQuick Study, iQ Readiness Scorecard, The iQ Logo, Kernel Proxy, MGX,
Natural Network Viewer, Network Registrar, the Networkers logo, Packet, PIX, Point and Click
Internetworking, Policy Builder, RateMUX, ReyMaster, ReyView, ScriptShare, Secure Script, Shop with
Me, SlideCast, SMARTnet, SVX, TrafficDirector, TransPath, VlanDirector, Voice LAN, Wavelength
Router, Workgroup Director, and Workgroup Stack are trademarks of Cisco Systems, Inc.; Changing the
Way We Work, Live, Play, and Learn, Empowering the Internet Generation, are service marks of Cisco
Systems, Inc.; and Aironet, ASIST, BPX, Catalyst, Cisco, the Cisco Certified Internetwork Expert Logo,
Cisco IOS, the Cisco IOS logo, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems
logo, Collision Free, Enterprise/Solver, EtherChannel, EtherSwitch, FastHub, FastLink, FastPAD, IOS,
IP/TV, IPX, LightStream, LightSwitch, MICA, NetRanger, Post-Routing, Pre-Routing, Registrar,
StrataView Plus, Stratm, SwitchProbe, TeleRouter, are registered trademarks of Cisco Systems, Inc., or its
affiliates in the U.S. and certain other countries.

All other brands, names, or trademarks mentioned in this document/website are the property of their
respective owners. The use of the word partner does not imply a partnership relationship between Cisco and
any of its resellers. (0008R)

3

Table of Contents

Introduction ___ 6
Intended Audience and Scope ___ 6

Additional Information __ 6

The Trailhead Menu___ 7

System Overview__ 8
ICM Web Option Components __ 9

Cisco Collaboration Server (CCS) __ 9
Cisco Trailhead (CTH) ___ 9
Cisco Media Blender (CMB) __ 9
Cisco Intelligent Contact Management (ICM) __ 10

Cisco ICM Web Peripheral Gateway (Web PG) _________________________________ 10
Cisco Enterprise Computer Telephony Integration (ECTI) Server ___________________________ 10
Automatic Call Distributor (ACD) ___ 10

Trailhead Components and Connections ___________________________________ 11
About Trailhead connections___ 11

Connection Types __ 13
To allow route requests to get from the Trailhead server to the Web PG ______________________ 13
To initiate Basic Callback requests ___ 13

Understanding Trailhead Destinations _____________________________________ 14
Destinations that Provide Response to Web Callback Requests ____________________ 14

How Destinations Reflect Your Call Centers ___ 15

Destinations that Handle Situations When Response is Not Available _______________ 15

Destinations that Handle ring, busy, error, and default ICM Conditions_____________ 16

Call Flow Through the Cisco ICM Web Option _________________________________ 17

About Destination Choosers ___ 18

Firewall Configuration and Networking____________________________________ 19
Firewall Configurations ___ 19

Polling Over Outbound Socket Connections Mode ______________________________________ 19
Two-way Socket Connection Mode __ 19
Classic HTTP Proxy Mode ___ 20
Transparent HTTP Mode __ 20

Networking Considerations __ 20

Trailhead Failover Using LocalDirector____________________________________ 21
How LocalDirector Helps__ 21

Limitations__ 22

Configuration for Trailhead Failover__ 22

4

Trailhead and Media Blender Connections ___ 22
Trailhead Destinations __ 22
Duplexed Web PG ___ 23
Redundant LocalDirectors__ 23

Setting up the LocalDirector ___ 24
Installing LocalDirector ___ 24
Creating a Virtual Server___ 24
Creating the Probe__ 25
Sample LocalDirector Configuration File__ 26

Understanding ICM input and output______________________________________ 27
ICM Input: The Web request __ 27

Visible fields __ 28
Hidden fields __ 28
Customizing your form __ 29

The Route Request Message to the Web PG ____________________________________ 29

Mapping ICM and Web Data___ 30
Mapping Web Data to Route Request Variables_________________________________ 30

Using ICM Call Variable 10 (Lucent switches only) _____________________________________ 30

Mapping ICM Variables to Web Variables _____________________________________ 31
Using the Output Map to Enhance ICM/Collaboration Reporting ___________________________ 31

Passing Data to the ECTI Server and Back to the Web ___________________________ 32
Sample files___ 33

ICM Script Considerations __ 34
How the ICM Script is Selected___ 34

Using a Variable or Literal in the Dialed Number Field___________________________ 34

Understanding the ICM Script ___ 35
ICM Script Tasks __ 35
Example ___ 37

ICM Script Label Configuration__ 38
Reserving a number of characters for the destination name ________________________________ 38

ICM Scripting Tip ___ 39
Edit in.map.properties on the Media Blender Server _____________________________________ 39
Configure the ICM ___ 39
Set up the ICM routing script ___ 39

Reporting on Web Calls ___ 40
Configuring Destinations__ 41

Defining and Naming Destinations __ 41

Setting a Destination Type ___ 42

About Callonly Destinations ___ 42

Understanding the destination<n>.queueconn Property ____________________ 43

Determining the URL to be Served by Each Destination __________________________ 45

Example 1: Setting up a Basic Callback Destination______________________________ 46

5

Example 2: Setting up a Destination for Web Collaboration _______________________ 47

Example 3: Setting up a Noncalling Destination _________________________________ 48

Destinations for Other Script Terminations ____________________________________ 49

Configuration File Reference __ 50
On the Trailhead Server: Trailhead.server.properties ___________________________ 50

General Trailhead Properties__ 50
Specifying Trailhead Connections ___ 51
Specifying a System Error Destination __ 53
Identifying the Callback Form __ 54
Setting up the Log __ 55

On the Media Blender Server: The Trailhead medium (Trailhead.properties) ________ 57
Define the Trailhead Medium on the Media Blender _____________________________________ 57
Configure Trailhead Properties __ 57
Media Blender Startup Properties __ 58
serverconntimeout= ___ 58
Specifying Trailhead Connections ___ 58
Specifying Trailhead Destinations ___ 60
Setting System Defaults ___ 62
Specifying the Trailhead Input and Output Maps __ 63
ICM Label Information __ 63
Verifying URLs__ 64

On the Media Blender Server: The Input Map (in.map.properties)_________________ 64

On the Media Blender Server: The Output Map (out.map.properties) ______________ 65

On the Media Blender Server: The Peripheral Input Map ________________________ 66

Maintaining HTML Pages and Forms _____________________________________ 67
HTML File Location__ 67

The Trailhead Start Page__ 68

The Callback Form___ 68

The Web Collaboration Pages __ 69
success-v30.html ___ 69
Other Collaboration Samples ___ 69

The Basic Callback Page __ 70

Pages for Noncalling Destinations___ 70

Index __ 71

6

Introduction
This document describes the configuration of Cisco Trailhead, a Web server application designed
to process Web-initiated requests for live contact. Cisco Trailhead collects Web requests and
submits them to the Intelligent Contact Management (ICM) Central Controller, which routes the
requests to appropriate destinations.

Intended Audience and Scope
This document is written for system administrators of the Trailhead software. It assumes proper
configuration of other products within the configuration.

Additional Information
Several software components comprise the Cisco solution for incorporating Web contact
functionality into ICM routing. The following table lists each of these components and where to
find more information about them.

Product Documentation
Cisco ICM Web Option Cisco ICM Web Option Overview

Cisco ICM Web Option Implementation Map
ICM configuration and script set up Cisco ICR System Manager Guide (and the switch

supplements for that guide)
Media Blender Media Blender Configuration Handbook

Media Blender Reference guide
Media Blender online Help

Cisco Collaboration Server Collaboration Administration and Reporting
Collaboration Agent and Caller online Help
Collaboration Administration online Help

7

The Trailhead Menu
Trailhead provides Web-based administration, allowing the administrator to gather information
and troubleshoot problems from a simple Web browser.

1. Open a Web browser and go to this URL:

http://<servername>/TrailheadAdmin.

The Trailhead Administration login page appears.

2. At the Trailhead login page, enter your username and password and click Log In.
The Trailhead Menu appears, as shown below:

The Trailhead Menu displays all of the commands you can execute when administering
Trailhead. In addition, it displays some constant information in the footer:

� Product name and version
� Current time
� Start time
� Run duration

The Help link provides detailed information about all of the features available on the Control
Panel. Refer to the online Help for more information.

8

System Overview
The Cisco ICM Web Option incorporates the routing of Web-initiated requests with the routing
capability of the Cisco Intelligent Contact Management (ICM) software. The ICM product allows
enterprises to distribute toll-free telephone calls among centers in different geographic locations.
With this integration, the ICM Central Controller is able to route Web requests for contact as
well.

Integral to the solution is Cisco Trailhead, an application that accepts Web requests and submits
them to the Web Peripheral Gateway (Web PG), which in turn submits them to the ICM Central
Controller for routing. The Web PG effectively translates incoming data from the Web into
information that can be interpreted by the ICM Central Controller, which can then route Web
requests to appropriate sites, just as it would a telephone call.

Trailhead also accepts output from the ICM script, ensuring that each location handles the Web
request appropriately. Locations that handle Web requests can provide these types of responses:

� Basic Callback--With Basic Callback, the caller who placed a Web request receives a
phone call back from an agent.

� Callback with Web Collaboration--Callback with Web Collaboration allows callers to
interact and share information with agents over the Web. In addition to receiving a phone
call back from an agent, the caller and agent can share Web pages, forms, or applications
using a Web browser.

9

ICM Web Option Components
The following figure illustrates the components of a simple ICM Web Option configuration.

For help in deploying the ICM Web Option product, see the Cisco ICM Web Option
Implementation Map included with this release.

Cisco Collaboration Server (CCS)
CCS, Version 3.01, enables the World Wide Web as a point of contact between an enterprise and
its customers. It allows a customer to interact with live call center agents using the Internet.

Cisco Trailhead (CTH)
CTH, Version 4.0, translates incoming Web data into information that can be interpreted by the
ICM software. Once the ICM script has routed the call, Trailhead also interprets ICM data and
uses it to redirect the caller to the selected appropriate call center.

Cisco Media Blender (CMB)
CMB, Version 4.0, enables the Automatic Call Distributor (ACD) to accept and handle Web-
based requests, providing for blended Web Collaboration. Media Blender allows you to
synchronize your Web-based and ACD-based call center systems by sharing Computer
Telephony Integration (CTI) events among participating media. A typical blended configuration
includes a Collaboration medium, an ACD medium, and a Trailhead medium.

10

Cisco Intelligent Contact Management (ICM)
ICM, Version 4.1.4, routes incoming Web-requests to the appropriate site and agent skill group.
Routing logic is established in an ICM script, which returns a label that determines the final
destination of the Web request.

Cisco ICM Web Peripheral Gateway (Web PG)
The Web PG allows the Trailhead medium to communicate with the ICM system. The Web PG in
the ICM Web Option configuration must be set up as the Routing Client. The Routing client
requests a route from the ICM, receives a response, and delivers the call to the specified
destination.

Cisco Enterprise Computer Telephony Integration (ECTI) Server
ECTI provides the computer telephony integration (CTI) interface that Media Blender can use to
communicate with the ACD. Versions 3.1 and 4.0 of the Media Blender support only the ECTI
driver.

Automatic Call Distributor (ACD)
The ACD provides queueing and agent selection for the call center. The following ACDs are
supported for this release:

� Aspect CallCenter, Versions 6.2 and 7.2
� Lucenty Definity G3, Version 6.3
� Nortel Meridian1, Version 24, SCCS 1.5
� Nortel Symposium, Versions 1.5 and 3.0
� NEC NEAX 2400, Version 4.12

Note that the Meridian, Symposium, and NEC switches do not support the predictive CTI
strategy.

For more information about the Cisco ICM Web Option, see the ICM Web Option Overview,
included with this release.

11

Trailhead Components and Connections
Trailhead is made up of two software components: the Trailhead server, which resides outside the
corporate firewall, and the Trailhead medium, which resides inside the firewall on the Media
Blender machine. Each component is configured using a Trailhead.properties file.

The Trailhead server and the Trailhead medium communicate with each other using connections.
Outside the firewall, Trailhead's connections query whether the Trailhead media inside the
firewall can route calls. Inside the firewall, the Trailhead medium's connections query Trailhead
for any alerts and statistics.

The Trailhead medium can be set up to perform two functions:

� Routing of requests from the Trailhead server to the Web PG
� Initiating Basic Callback requests

Note that you can set up a Trailhead medium to perform either or both of these tasks.

About Trailhead connections
The Trailhead server and the Trailhead medium communicate with each other through the
corporate firewall. To accommodate this, the Trailhead connection uses the Sun Microsystems
Remote Method Invocation (RMI). With such a connection, an RMI registry exists on both sides
of the firewall. Each registry identifies its machine to the machine on the other side of the
firewall.

When defining Trailhead connections, you need to define your connections in property files on
both the Trailhead medium and the Trailhead server. The properties files are:

� \CiscoTH\servlet\properties\Trailhead.server.properties (on
the Trailhead server)

� \CiscoMB\servlet\properties\blender\Trailhead.properties (the
Trailhead medium on the Media Blender machine)

12

Each connection registers at its registry port using its local server name. The connection accepts
incoming requests that are made to its registry port, as long the request provides the password
(local password) to the server.

For one side of the RMI connection to connect to the other side, it needs to know the hostname
and/or IP address, the port, and server name to request and the password to provide. You can set
these on each side of the firewall using Trailhead.properties (for the Trailhead
medium) and Trailhead.server.properties (for the Trailhead server.) The following
image illustrates the properties used on both sides of the firewall to identify the RMI connection:

For complete information on each of these properties, see Configuration file reference.

13

Connection Types
Connections on the Trailhead server can be configured as CanRoute and CanQueue
connections.

CanRoute connections are connections that can be used to route a session to a Trailhead Web
Collaboration destination. If the Media Blender at the other end of the connection is connected to
a Web PG for routing Web callback requests, the connection can route.

CanQueue connections are connections that can be used to queue calls using Basic Callback
destinations. CanQueue is used for Basic Callback only. If the Media Blender at the other end of
the connection is used for Basic Callback, then the connection should be set so it can queue.
Note that you can set up a Trailhead medium to perform either or both of these tasks.

To allow route requests to get from the Trailhead server to the Web PG
To perform routing, the Trailhead medium MUST have a CanRoute connection to the Trailhead
server. Its destination chooser must be DcICM. (See About Destination Choosers for more
information.) All routing destinations are configured on the Trailhead medium.

To initiate Basic Callback requests
In this case, the Trailhead medium must have a CanQueue connection on the Trailhead server.
The Media Blender must have an ACD medium configured as well.

If a Trailhead medium does Basic Callback but not routing, its destination chooser should be
DcNull. (See About Destination Choosers for more information.)
.

14

Understanding Trailhead Destinations
The Trailhead software package gathers information about a caller placing a Web-based request
and submits it to the ICM. A script set up in the ICM receives the caller data and performs all
routing logic, ensuring the call can be routed to an appropriate location. At this point, Trailhead
again takes over, receiving ICM script output and providing appropriate response to the Web
request.

ICM scripts route calls to call centers at different locations. The script returns labels, which are
simply strings that identify each call center. With Trailhead, you set up destinations that
correspond to each label. For each destination, you can specify the type of response that should be
provided to the Web request (Basic Callback or Callback and Web Collaboration, as explained
below).

Destinations are defined by the Trailhead.properties file on the Trailhead medium,
which resides on the Media Blender server. You can set up destinations that do the following:

� Provide successful response to web callback requests
� Handle situations when callback is unavailable
� Handle ring, no answer, error, and default ICM terminations

Destinations that Provide Response to Web Callback Requests
Destinations can be set up to provide these types of response:

Basic Callback--With Basic Callback, the caller who placed a Web request receives a call back
from an agent. When a destination is set up to provide Basic Callback only:

1. Trailhead sends a URL that tells the caller to expect a call back.
2. Trailhead sends a message to Media Blender, requesting that it place an outbound call to the

caller.
3. The ACD routes the call to the agent

When you create destinations that provide Basic Callback, you assign them a CALLONLY
destination type. This means that requests submitted to this destination are queued internally to
the switch.

Basic Callback and Web Collaboration--In configurations that include the Cisco Collaboration
Server (CCS), Trailhead can ensure that callers participate in a Collaboration session. Web
collaboration allows callers to interact and share information with agents over the Web. The
caller and agent can share Web pages, forms, or applications using a Web browser (See the CCS
documentation for supported Web browsers).

15

When responding to a request for collaboration:

1. Trailhead serves the caller with a URL that launches a Collaboration session.
2. CCS sends a message to Media Blender, requesting that it place an outbound call to the

caller.
3. The ACD routes the call to the agent.
4. The Collaboration Server connects the caller and the agent via the Web

When you create destinations that provide Web Collaboration, you assign them a COLLAB
destination type. This means that requests submitted to this destination are queued externally, to
the Collaboration Server. See Setting Destination Type, in the Configuring Destinations section
of this guide for more information.

How Destinations Reflect Your Call Centers
Trailhead Destinations do not necessarily reflect individual call centers within your enterprise.
Instead, they reflect a type of response provided to incoming Web requests. For example,
consider a configuration that includes these two call centers:

� Boston--All agents at this call center will provide Web collaboration.
� San Jose--Some agents at this call center will provide Web collaboration. Some agents

will NOT have access to Collaboration and must always provide Basic callback only.

To accommodate this configuration, set up Trailhead destinations as follows:

This call center... ...requires this many Trailhead destinations
Boston One destination, that provides Web Collaboration
San Jose Two destinations. The first destination provides Web Collaboration; the other

destination should provide Basic Callback for those agents who do not have
access to Collaboration.

Destinations that Handle Situations When Response is Not
Available
You also set up destinations that correspond to ICM labels that indicate web response is not
available. For example, you can set up a noagents destination to inform the caller of the situation.
You could also set up a holiday destination, to handle situations when a call center is closed due
to a holiday.These destinations serve URLs to callers, informing them of the reason response is
unavailable. These are referred to as noncalling destinations.

16

Destinations that Handle ring, busy, error, and default ICM
Conditions
The ICM script can return special terminations rather than labels. These terminations are:

� ring
� busy
� error
� default

Although these terminations can be used to indicate that response is not available, you can also
use them to handle crank or otherwise troublesome telephone calls.

17

Call Flow Through the Cisco ICM Web Option
The following diagram illustrates how a Web call might be routed through a configuration with
Trailhead and ICM:

18

About Destination Choosers
Destination choosers are dynamically loaded with the Trailhead software and determine how
Trailhead should choose a destination. Both the Trailhead server and the Trailhead medium
contain destination choosers. In ICM Web configurations, the default destination choosers rely on
the ICM script to actually determine the correct destination for the call. The default destination
choosers in the ICM Web Option environment are:

Trailhead Component Destination
Chooser

Description

Trailhead server DcRemote Sends a message to one of the configured CanRoute
connections, asking the server on the other side of this
connection to supply a destination, using its
DestChooser.

Trailhead medium
 (on the CMB server)

DcICM Sends a RouteRequest message to the Web PG which
runs an ICM script and returns a label. The label
matches a destination, which is returned.

Trailhead medium DcNull Allows a medium to accomplish ONLY Basic Callback.
Use DcNull if the Trailhead medium should not
perform destination routing.

19

Firewall Configuration and Networking
This section provides information about the following:

� Firewall Configurations
� Networking Considerations

Firewall Configurations
Media Blender communicates with the Trailhead Server through the corporate firewall using the
Sun Microsystems Remote Method Invocation (RMI). This section describes the firewall
configurations supported in this release, as well as special setup required for optimal
performance.

The firewall between Media Blender and the Trailhead server can be set up in any of the
following four modes:

� Polling over outbound socket connections from Media Blender to Trailhead
� Two-way socket connection
� Classic HTTP Proxy mode
� Transparent HTTP mode

Polling Over Outbound Socket Connections Mode
The polling mode allows outbound socket connections from Media Blender to the Trailhead
server. Media Blender connects to the Trailhead server using TCP/IP socket connections. If you
use this mode, ensure that your firewall permits outbound socket connections from Media
Blender to Trailhead on all ports. This mode provides high throughput and is the recommended
configuration.

Note: In this mode, you must disable attempts by the Trailhead server to automatically connect to
the Trailhead medium. The Trailhead.server.properties file contains a property,
connection<n>.disableautoconnect, which you must set to true to ensure the
Trailhead server does not try to automatically connect to the Trailhead medium. This property
setting ensures that the Trailhead medium will instead poll the Trailhead server from inside the
firewall.

Two-way Socket Connection Mode
In the two-way socket connection mode, the firewall allows both of the following:

� Outbound socket connections from Media Blender to Trailhead
� Inbound socket connections from Trailhead to Media Blender

If you use this mode, ensure that your firewall permits inbound and outbound connections
between Media Blender and Trailhead on all ports. This mode provides the highest throughput
and the lowest delays of the four modes.

20

Note: If the firewall will allow both inbound and outbound communication, you must set the
connection<n>disableauotoconnect property in
Trailhead.server.properties to false. This property setting ensures that the Trailhead
server will connect to the Trailhead medium automatically, initiating two-way communication
through the connections.

Classic HTTP Proxy Mode
In the Classic HTTP proxy mode, the firewall permits outbound HTTP communication only to all
ports. Media Blender connects to the Trailhead server using HTTP to the RMI registry port (1099
default). This mode provides the lowest throughput of the four modes. Make sure the checkurls
property in the Trailhead.properties file on the Media Blender server is always set to
false.

If you set up your firewall using this mode, you must make sure you set up the proxy parameters
on the Media Blender using ServletExec Administration and the LoadWLRoot servlet. (See the
Media Blender Installation Guide for more information.)

Transparent HTTP Mode
The firewall permits HTTP communication over all ports. There is no special set up required for
this mode.

Networking Considerations
The following are some networking considerations:

� Both the Trailhead server and the Media Blender server require static IP addresses.
� Regardless of your firewall setup, you must maintain a hosts file rather than use Domain

Name Service (DNS) to identify the IP address of your machines. Using DNS may result
in RMI connectivity problems. The hosts file resides at these locations:
� Windows NT: winnt\system32\drivers\etc\hosts
� Solaris: /etc/hosts

The hosts file on the Blender machine must have an entry for the Trailhead server; the hosts file
on the Trailhead server must have an entry for the Blender machine.

� If using Classic HTTP proxy mode, do one of the following:
� Ensure the firewall machine contains a hosts file entry or
� Specify the IP address in the Trailhead medium's property file on the Blender server

(Trailhead.properties.)
� If using Classic HTTP proxy mode, the Trailhead server IP address must not be

accessible by any means other than what is allowed through the firewall. To verify this,
try to ping the Trailhead machine; you should receive the message "Destination host
unreachable." (Receiving a timeout message does not ensure the machine is unreachable.)

21

Trailhead Failover Using LocalDirector
The ICM Web Option system is comprised of two paths--a routing path and a CTI path. This
section describes only the routing path. When Trailhead routes requests to the ICM Central
Controller using a routing configuration that includes the Cisco LocalDirector, the goal of the
configuration is to eliminate a single point of failure, namely Trailhead.

How LocalDirector Helps
If any of the following events occur, the system cannot route Web session requests:

� The Trailhead server goes down
� The Trailhead/Media Blender connection fails.
� The Routing Media Blender fails.
� The connection between the Media Blender and the Web PG fails.

With the proposed solution using redundant LocalDirectors, Web session requests coming from
the Web site, are routed to the redundant routing path, which is shown in the following figure:

Trailhead failover is accomplished using the Cisco LocalDirector. The LocalDirector offers a
high-availability, Internet scalability solution that provides load balancing and a failover
mechanism to eliminate points of failure for a server farm.

You can use a Cisco LocalDirector and the LocalDirector User Interface (LUI) software to load
balance and probe two Trailhead servers. Load balancing, performed by the LocalDirector, is the
distribution of traffic between the two servers. Probing, performed by the LUI, is the checking of
the servers at specified intervals to be sure that the Web link is active. If the LUI probe detects
that a Web link is inactive for one Trailhead server, it will direct the LD to designate that server
as "out of service" (OOS) and direct traffic to the other Trailhead server.

Any ongoing sessions on the Trailhead server might be lost, but new session requests will be
routed. The components or links that have gone down can be restored by hot swapping.

22

Limitations
Note that this configuration does not eliminate or overcome all modes of failure. Some of the
limitations of the system include:

� Failover detection is limited to detecting if the Trailhead server is reachable over the
network.

� If a Cisco Collaboration Server or a Cisco Media Blender in the CTI path of the system
(not shown above) goes down, the system might still direct requests to that server. Such
requests will, however, not be served.

Configuration for Trailhead Failover
For Trailhead failover using the LocalDirector with the ICM Web Option solution, you need a
pair of Trailhead servers. For each additional Trailhead server, you need a complementary Cisco
Media Blender and a Web PG. The figure shown previously illustrates the configuration. You
must configure the following:

� Trailhead and Media Blender connections
� Trailhead destinations
� Duplexed Web PG
� Redundant LocalDirectors

Trailhead and Media Blender Connections
Each Trailhead server is configured to connect to both CMB1 and CMB2. When a request comes
in from the LocalDirector, it goes to Trailhead (TH1). Trailhead sends the data to one CMB, not
to both. TH1 chooses the CMB that is up. If one connection is down, Trailhead uses the other.

Configure the connections for the Trailhead medium on the CMB in the
trailhead.properties file. Configure the connections for the Trailhead server in the
trailhead.server.properties file. See the section Trailhead Components and
Connections for additional details.

In the Trailhead.server.properties file on the Trailhead server, set the value for the
FormURL property to the virtual IP address for the callback form (callform.html). The
callback form itself should be on a server other than the Trailhead server as explained in the
following section. For information about the virtual IP address, see Creating a Virtual Server.

Trailhead Destinations
To ensure that the destination URLs are accessible by a Trailhead server in the event that one
Trailhead server goes down, you must move the HTML forms in the URLs to a new directory on
the Cisco Collaboration Server (CCS) or some other Web server. You must also configure two
property files. This is a two-step process:

1. Create a new directory and move the destination forms from the Trailhead server to this
directory.

2. Configure two property files to point to the new directory.

23

Step 1: Create Directory and Move Forms

From the following directory location on the Cisco Collaboration Server:

C:\<CCS dir>\pub\html\Forms\

create a \trailhead subdirectory:

C:\<CCS dir>\pub\html\Forms\trailhead

and move all the destination forms to this new subdirectory from the following Trailhead server
directory:

C:\CiscoTH\pub\html\Forms\trailhead

Step 2: Configure the Property Files

In both the Trailhead.properties file on the Media Blender server and the
Trailhead.server.properties file on the Trailhead server you fill find a
destination<n>.URL property. Change the value of this property in both of the files so that
they point to the new Trailhead directory you have just created:

destination<n>.URL=http://<CCS-HOST-NAME>/<CCS
dir>/html/Forms/trailhead/<filename>.html

Note: Although the above example uses the Cisco Collaboration Server, you can move the forms
to a directory on any Web server and then have the destination<n>.URL property point to
that location.

Duplexed Web PG
The ICM Web Peripheral Gateway (PG) connects to the Media Blender. To help keep things
running, set up a duplexed Web PG using two Web PGs with Voice Response Unit Peripheral
Interface Managers (VRU PIMs), as shown in the previous figure.

The duplexed Web PG operates as one PG with two sides--Side A and Side B. If one Web PG
goes down, the other side becomes active. The shadow PIM picks it up. For information on how
to install and configure duplexed PGs, see Chapters 2 and 7 of the ICR Installation Guide. For
more information on fault tolerance using the ICM software, see Chapter 2 of the ICR
Administrator Guide.

Redundant LocalDirectors
For full redundancy, you need two Cisco LocalDirectors. The two LocalDirectors can be
configured to back each other up, so that when one unit fails, the other takes over for it. However,
they are only one component of a fault tolerant Web application system. See the White Paper:
Failover Configuration for LocalDirector for details on how to set up a primary and a secondary
LocalDirector.
When you have both a primary and a secondary LocalDirector, there is still only one virtual
server and one virtual IP address. If one LocalDirector goes down, the other one assumes all of its
configurations.

24

Setting up the LocalDirector
You can configure the LocalDirector directly from the command-line interface or by using the
LocalDirector User Interface application. The LUI is necessary for configuring probes. After you
have configured the LocalDirector, the fact that there is more than one Trailhead server is
invisible to the caller, because the LocalDirector presents a "virtual" server to the caller, and the
requests to the virtual server are directed to the "real" Trailhead servers. Each Trailhead server
and the virtual server have IP addresses that are added into the LocalDirector configuration file (a
command script). See the Sample Configuration File.

This section provides information about the following:

� Installing LocalDirector
� Creating a Virtual Server
� Creating a Probe
� Sample Configuration File

Installing LocalDirector
Before you can configure the LocalDirector using the LUI application, you must do the
following:

1. Install the LocalDirector User Interface application on your Windows NT or Solaris
workstation.

2. Connect the enclosed null modem serial cable to the console port of the LocalDirector and the
other end of the cable into your ASCII terminal or the serial port of your PC (running a
terminal emulation program). Directly connecting to the LocalDirector is necessary so you
can initially configure the IP address of the LocalDirector.

For details on how to install and use the LUI and the LocalDirector, see the LocalDirector User
Interface Install and User Guide and the LocalDirector Installation and Configuration Guide.

Creating a Virtual Server
A virtual server presents a single IP address that represents two or more real servers. The virtual
IP address is published to the user community, but the real Trailhead server IP addresses can
remain unpublished, allowing you to hide actual site implementation details and provide a single
point of contact for users. The virtual server address can be accessed only from the client side of
LocalDirector. Also clients and the real servers bound to the LocalDirector virtual server cannot
be located on the same side of LocalDirector.

In the Trailhead.server.properties file on the Trailhead server, set the value for the
FormURL property to the virtual IP address for the callback form (callform.html).
Using the LocalDirector User Interface application, you must first create a virtual server and then
create the real servers. Basically, you add the Name, IP address, Port, and bind ID using the
Create Virtual Server window and the Create Real Server window.

See the Adding Virtual Servers and Adding Real Servers to Virtual Servers sections of the
LocalDirector User Interface Install and User Guide.

25

Creating the Probe
In the Tree View of the LocalDirector User Interface Window, you will see a probes directory
under the virtual server directory. Select Probes and click the Create New Web Probe icon. On
the Create New Web Probe window, enter the following information into the appropriate fields:

� A statement that describes the purpose of the probe, such as "Test TH link."
� The URL for the link you want to test; for example, http://161.44.248.121/
� The interval of time between probes; for example, 30 minutes if you want LocalDirector

to check the link every 30 minutes.

See Setting Up Probes in the LocalDirector User Interface Install and User Guide for more
details.

For information on setting up the LocalDirector to do load balancing, see the LocalDirector
Installation and Configuration Guide.

26

Sample LocalDirector Configuration File
By entering information into the LocalDirector User Interface application using directed mode,
the following configuration file was created. The bold text near the end of the file shows the
virtual, real, and bind IP address information. Each bind command binds a real Trailhead server
to the virtual server. The caller's request goes first to the virtual server and then to the Trailhead
server listed first in the file (first real IP address). Subsequent connections to the virtual server
are load balanced based on a user-selectable predictor algorithm. The default predictor algorithm
is "leastconns" (least number of connections). Note that the first IP address listed in the following
file is that of the LocalDirector.

: LocalDirector 430 Version 3.3.2
syslog output 20.3
no syslog console
enable password 000000000000000000000000000000 encrypted
hostname localdir
no shutdown ethernet 0
no shutdown ethernet 1
shutdown ethernet 2
no shutdown ethernet 3
interface ethernet 0 auto
interface ethernet 1 auto
interface ethernet 2 auto
interface ethernet 3 auto
mtu 0 1500
mtu 1 1500
mtu 2 1500
mtu 3 1500
multiring all
no secure 0
no secure 1
no secure 2
no secure 3
ping-allow 0
ping-allow 1
ping-allow 2
ping-allow 3
ip address 161.44.248.250 255.255.252.0
route 0.0.0.0 0.0.0.0 161.44.248.1 1
no rip passive
rip version 1
failover ip address 0.0.0.0
no failover
failover hellotime 30
password cisco
telnet 161.44.251.121 255.255.252.0
telnet 161.44.240.120 255.255.255.0
snmp-server enable traps
snmp-server community public
no snmp-server contact
no snmp-server location
virtual 161.44.248.248:0:0:tcp is
real 161.44.248.121:0:0:tcp is
real 161.44.248.102:0:0:tcp is
bind 161.44.248.248:0:0:tcp 161.44.248.121:0:0:tcp
bind 161.44.248.248:0:0:tcp 161.44.248.102:0:0:tcp
localdir(config)#

27

Understanding ICM input and output
Trailhead provides information to the Intelligent Contact Management (ICM) Central Controller,
which then handles routing of the request to the appropriate call center. ICM reads information
about each incoming call, determines the best destination for the call, and sends the call to an
appropriate destination. Trailhead then receives information from the ICM script after the request
has been routed.

This section discusses these topics:

� ICM Input: The Web request
� The Route Request message to the Web PG

ICM Input: The Web request
The data Trailhead submits to ICM comes from the Web request, submitted by the caller. Callers
place requests using the Web by filling out a callback form served by Trailhead. The callback
form is an HTML form used to gather information about the caller. We provide a sample callback
form, callform.html, which appears below:

This form gathers information about the caller. Your enterprise can alter the HTML that
comprises this page to gather information pertinent to your business.
Some of the data passed in the Web request is entered by the caller; the Web request also captures
less visible data, such as information about the Web browsers used in each session. The variables
used to store all Web request values appear in the table below:

28

Visible fields
The fields on this form are described as follows:
Field name Field name in

HTML source
Description

Name Name The caller's name. Trailhead retrieves the name
entered here and inserts it into the forms served
back to the caller

Phone number PhoneNumber The caller's telephone number. Trailhead retrieves
the number entered here and inserts it into the
HTML forms served back to the caller.

I wish to contact... Route The routing code to which this call should be
routed. You can format this as a drop-down box,
allowing the caller to choose from a list of skills or
geographic locations. Or, you can create several
callback forms, one for every agent group, with the
appropriate routing code hard-coded into a Route
field.

My internet connection
is separate from my
phone. I'd like to be
able to share Web
pages...

WantsCollab This flag determines whether the request is routed
to a CALLONLY or a COLLAB destination. If the
Collaboration flag is checked, the request is routed
to a Collaboration destination.
Note: The ICM script MUST evaluate the value in
this field to route the request correctly. See
Understanding the ICM script in this guide for
more information.

Contact me in about
...minutes

CallBackDelay This field lets the caller specify a delayed callback.
The caller can enter how long the call center
should wait to call back, beginning when the
request was submitted. The caller enters this time
in minutes (numeric values only). The time entered
should not exceed 120 minutes.

Hidden fields
The following table describes the hidden HTML fields included in callform.html that you
can pass to the ICM software.

Field Description

Trailhead If set to 1, this field identifies this as a Trailhead form.

RequestFromURL This field identifies the page from which the Web request was made.

User1-User4 You can define these fields to provide information about the caller to
ICM, Collaboration Server, or Media Blender. See the Media Blender
Configuration Handbook for more information on defining these fields.

29

Customizing your form
The tables above show the fields that are included in the sample callform provided with
Trailhead. You can customize the HTML source to add any other fields your site may require or
to remove fields that are unimportant to your organization.

The Route Request Message to the Web PG
Trailhead sends a Route Request message to the Web PG, which, in turn sends the Route Request
message to the ICM Central Controller. Using the Route Request message, the Web PG (the
routing client) asks the ICM for a destination for the call.

The Route Request message sent to the Web PG can contain the following ICM variables. (Each
of the 10 Call Variables listed below can have up to 40 characters.)

Variable Description
DN Dialed Number
ANI Automatic Number Identification
CED Caller Entered Digits
CALLVAR1 User-defined string
CALLVAR2 User-defined string
CALLVAR3 User-defined string
CALLVAR4 User-defined string
CALLVAR5 User-defined string
CALLVAR6 User-defined string
CALLVAR7 User-defined string
CALLVAR8 User-defined string
CALLVAR9 User-defined string
CALLVAR10 User-defined string

30

Mapping ICM and Web Data
You can ensure that information from the Web is passed to the ICM and to the ECTI server. You
can also ensure that ICM information is passed back to the Web database. This section includes
these topics:

� Mapping Web data to ICM variables
� Mapping ICM variables to Web variables
� Passing data to the Cisco ECTI server

Mapping Web Data to Route Request Variables
You populate the Route Request message with information gathered in the Web request using a
text file called the input map. Trailhead's Input map (in.map.properties) is a text file that
maps fields found on the Trailhead callback form with ICM fields. The format of each entry is as
follows:

<ICM variable> = <Web variable>

For instance, the file might contain this entry:

CED=Route

This entry specifies that the value in the Route field on the web request should be passed in the
CED (Caller Entered Digits) variable in the Route Request message. In this way, the Input Map
translates the information from the incoming web request and populates a route request message
submitted to ICM.

Note that you can set the ICM variable to a literal string rather than a Web variable. For instance,
consider the following example entry:

DN="1000"

This line ensures that 1000 is always passed in the DN field.

Important: Mapping DN to a literal string ensures that the same script is run for all web calls.
See How the ICM script is selected for alternative methods for selecting scripts.
A sample input map appears in the Configuration File Reference section of this guide.

Using ICM Call Variable 10 (Lucent switches only)
When using the predictive call strategy with a Lucent switch, Media Blender makes internal use
of Call variable 10. If you need to be able to use call variable 10 in your application, you can free
up variable 10 by setting the calltag property in ACD.ciscocti.properties to another
ICM call variable. See the Media Blender Reference Guide for a description of this and all ECTI
properties.

31

Mapping ICM Variables to Web Variables
ICM also passes caller data through each label to the Web PG. The Web PG then sends a Route
Select message to Trailhead. You use a text file called an output map
(out.map.properties) to map ICM values received in the Route Select message to web-
based values that can repopulate the web request. The output map is optional.

The format of each entry in the file is as follows:

<ICM variable> = <Web variable>

Using the Output Map to Enhance ICM/Collaboration Reporting
The output map is particularly important if you want to be able to identify Web calls in your
Collaboration reports. You can write an ICM script to associate a unique identifier, such as the
ICM Router Call Key, with each Web call. You can then use the output map to place the
identifier in one of the Collaboration call variables.

For instance, if you placed the ICM call identifier in ICM Call variable 6, an entry in your output
map might be:

CallVar6=User1

This entry specifies that the value in the call variable 6 field on the ICM system should be placed
in to User1 field in the Collaboration Server data base. The value in the User 1 field is displayed
in the Collaboration Adminsitration Request report (see Reporting on Web calls and
Understanding the ICM Script in this guide for more information.)

See The Web Request in this guide for a complete list of Web callform variables.
A sample output map appears in the Configuration File Reference section of this guide.

Note: You can also pass any of the Web fields to the Cisco ECTI server. See Passing data to the
Cisco ECTI server for more information.

32

Passing Data to the ECTI Server and Back to the Web
You have the option of loading callback form data, as well as data obtained by the ICM script,
into Cisco ECTI server call variables. The ECTI server can then use these values in a variety of
CTI applications, such as agent screen pops.

You can map any information from any of the variables on the callback form, as well information
stored in the 10 ICM call variables to any of the 10 variables on the CTI server. The 10 ICM call
variables can contain up to 40 characters each.

Important: This release of Trailhead does not support the mapping of ICM expanded call
variables to Web variables.

(For more information, see these sections of this guide: ICM input--the Web request and The
Route Request message to the Web PG.)

To use this feature, you must set up a text file called an input map between the CTI server and the
Web callback form. This file is called cti.in.map.properties and resides in the
CiscoMB/servlet/properties directory. The format of each entry is as follows:

<ICM variable> = <Web variable>

For instance, the file might contain this entry:

CALLVAR2=user1

This entry would ensure that the value in the User1 field on the callback form is passed into Call
Variable 2 on the CTI server.

Note that you can set the CTI server variable to a literal string rather than a Web variable. For
instance, consider the following example entry:

CALLVAR1="Web Call"

This line ensures that the words "Web Call" are passed to call variable 1.

A sample ECTI peripheral input map appears in the Configuration File Reference section of this
guide.

Note: You must identify the peripheral input map in your ACD.ciscocti.properties file,
using the peripheral.inmap property. See the Media Blender Reference Guide for more
information.

You can use the output map to then map any of the values stored in the ICM variables back to the
Web database.

33

Sample files
We provide several sample files you can use to ensure Web and ICM data is passed to the ECTI
server. These three samples reside in the CiscoMB/servlet/properties directory and
are designed to be used together. Specifically:

callvars-cti.in.map.properties
This sample file maps Web call variables 1-10 ito the CTI call variables 1-10 (in the phantom
callback to reserve the agent and Web callback, if there is one.)

callvar-out.map.properties
This sample file maps the CTI call variables 1 - 10 into the Web variables (from the Web request
call).

callvars-sanjose1.html
This sample file is an HTML form that launches a Web Collaboration session. It substitutes in the
CTI Call Variables 1-10 (from the Web request into the Web session in Collaboration in
Blender.)

34

ICM Script Considerations
This section contains information about ICM script considerations.

How the ICM Script is Selected
ICM scripts are selected by the incoming ICM call type. ICM call types refer to different
categories of calls; for instance a call type might be set up for Sales; another might be set up for
Service. When a call comes in for Service, ICM selects and runs the appropriate script.

The call type for Web calls is determined by the Dialed Number (DN) field either by itself or with
any combination of the Automatic Number Identification (ANI), and the Caller Entered Digits
(CED) fields in the incoming Route Request Message.

In your input map, ensure the following Web variables are passed to these ICM variables:

ICM Variable Web Variable
DN "<script number>" or Route (see section below).
ANI PHONENUMBER
CED NAME

Using a Variable or Literal in the Dialed Number Field
You can set the DN field to a literal string by enclosing the script number within quotation marks.
For instance, you can ensure that 1000 is always passed in the DN field by including the entry
DN="1000" in your input map.

If you choose to map DN to a literal string, and if it is the only Route Request variable used to
select the script, be aware that you will be able to run only one script for your Web requests--the
script mapped to the literal passed in the DN field. If you also use the ANI and CED variables
when setting up the Web call type, however, you can run multiple scripts.

If, however, you choose not to use a literal string, you can set the DN to equal the value in the
Route field on the Web callback form. You can then maintain several scripts to route Web
requests, based on whatever value is entered in the Route field on the callback form. Keep in
mind, however, that setting the DN to a Web variable means that whatever is entered in the Route
field will be mapped to the DN on the ICM Web PG. If a Web user tampers with call form data,
in particular with the Route value, an unexpected value may be returned and mapped to the DN
field. It is therefore possible that a Web-routing script may be selected that is different from the
script you intended.

35

Understanding the ICM Script
The ICM script performs all tasks associated with ensuring the web request is routed to the
correct peripheral target. The script can perform real-time analysis of available resources at each
location in your configuration and make decisions on routing the requests based on that analysis.

ICM Script Tasks
When routing Web requests, the ICM script must perform these tasks:

� Evaluate available resources at each call center in your configuration.
� Determine whether the request should receive Web Collaboration or Basic Callback.
� Associate the call with a unique ICM identifier (for Collaboration reporting purposes--

optional).
� Return labels that correspond to Trailhead destinations.

Evaluate Available Resources
ICM selects a resource based on a number of factors. For instance, a script might query all
resources to determine the location of the agent who has been available the longest. Another
factor ICM can use to route calls is the Minimum Expected Delay (MED). With MED, ICM
queries selects the resource that expects the shortest wait for the call.

Choose between Collaboration and Basic Callback
The script can also evaluate values passed to the script from the Web request. For instance, the
script might evaluate the value passed in the ANI field to determine the best skill group to which
to route the call.

The route request also contains a flag that determines whether a Collaboration session or Basic
Callback has been requested. This value is entered in the wantscollab field on the Web callback
page. (A value of on indicates Collaboration; off indicates Basic Callback.) We suggest this value
be mapped (using the input map) to one of the ICM call variables (CALLVAR2).

The script must evaluate the value in this field to determine proper routing of the Web request.
Trailhead destinations are set up to provide either Web Collaboration OR Basic Callback.
Therefore, the script must examine the value in the wantscollab field to ensure the request is
routed to the correct destination.

Associate a Unique ICM Identifier with the Web request (optional)
This optional step ensures that Web calls routed through the ICM can be identified in
Collaboration reports. Using a Set node, you can use the RouterCallDay and RouterCallKey
variables to assign a unique identifier to one of the ICM call variables. You can then use your
output map to map the identifier to Collaboration call variable 1 (User1). You can then identify
Web calls that were routed through the ICM by locating the identifier in Collaboration reporting.

Return Labels that Correspond to Trailhead Destinations
ICM scripts return labels that indicate the peripheral target to which the call is routed. Labels are
strings that are interpreted by the Web PG and point to particular locations and routing addresses
within the configuration. (A routing address typically corresponds to a skill group.)

36

The Trailhead administrator sets up Trailhead destinations that correspond to each label output by
an ICM script. Trailhead destinations simply indicate the method your site will use to respond the
Web request. For instance, one Trailhead destination might provide Web Collaboration; another
might provide Basic Callback only. Another destination might serve the caller a URL that
indicates the call center is down. (See the Configuring destinations of this guide for more
information on Trailhead destinations.)

Because Trailhead destinations indicate a type of response to a request, you will likely have more
Trailhead destinations than actual call centers.

Your ICM script, therefore, must return labels that correspond to each Trailhead destination.

37

Example
Below is a sample script that might be used to route Web calls to two different types of agents.

For more information on creating scripts, see the ICR System Manager Guide.

38

ICM Script Label Configuration
When Trailhead receives the label from the ICM, it extracts the destination name and the routing
address that should be used for the call from the label name. In most cases, script labels should
follow this format:

<destination name><delimiter><routing address>

where

� <destination name> indicates the location of the call center to which the request is
routed.

Important: The destination name portion of each label must match the names of your Trailhead
destinations. See the Defining and naming destinations section of this guide for more information.

� <delimiter> is any character used to separate the two portions of the label. You can
define the delimiter to any character of your choice. (We suggest using a hypen.) See the
Configuring destinations section of this guide for more information. (Note that you can
choose not to use a delimiter, but rather a length-based parsing method for passing this
information in the ICM label. See Reserving a number of characters for the destination
name, below for more information.)

� <routing address> is the numeric identifier used by the ACD to determine how to
queue the call. For example, in the Lucent Definity, this is the vector directory number
(VDN).

For example, the label Boston1-12345 indicates that the call should be routed to the Boston1
location, and to VDN 12345.

For more information on ICM scripting logic, see the ICR System Manager Guide.

Reserving a number of characters for the destination name
You can choose not to use a delimiter in your label names, you can configure Trailhead to
interpret the first n characters in a label name as the destination name. The ICMLabelLength
property in the Trailhead properties file lets you specify how many characters reflect the
destination name.

For instance, in the properties file for the Trailhead servlet, you might specify the
ICMLabelLength property as 8. If the Label name is SanJose112345, Trailhead will interpret the
first 8 characters as the destination name, or SanJose1. The routing address, therefore, is the
remainder of the label name, or 12345.

If you choose this method, make sure your ICM Script labels follow the convention specified in
the IcmLabelLength property in Trailhead.CiscoVRU.properties.

39

ICM Scripting Tip
Using the Trailhead medium on the Media Blender server, you can configure a CallOnly
destination and a Collaborative destination that point to the same peripheral target. This requires
that you:

1. Edit the in.map.properties file on the Media Blender Server
2. Configure the ICM
3. Set up the ICM routing script

Edit in.map.properties on the Media Blender Server
Edit the in.map.properties file on the Media Blender server and set the ICM Call Variable
2 to the Web WantsCollab field. For example, the file should contain this line:
CallVar2=WantsCollab

Configure the ICM
Create two labels with the same peripheral target; for example, site1_collab-6000 and
site1_callonly-6000.

Set up the ICM routing script
This routing script example has two rules, one which maps to Service.Sales for a call-only
session, and the other which maps to Service.Sales for a collaborative session. Using the
following method, the same label is returned every time; that is, the first rule returns the
site1_collab-6000 label, and the second rule returns the site1_callonly-6000 label.
Complete the following steps:

1. In the lower left corner of the Routes tab on the ICM Route Select Properties dialog box,
select the "Allow connection for each target" checkbox.

2. Add the following formula in the "Consider If" section for the Collaborative destination:
Service.Sales.AgentsLoggedOn > 0 && Call.PeripheralVar2 = =
"on"

This assumes that CallVar2 contains the contents of the Wants Collab form element
mapped through the in.map.properties file.

3. Add the following formula in the "Consider If" section for the CallOnly destination:
Service.Sales.AgentsLoggedOn > 0 && Call.PeripheralVar2 !=
"on"

4. Create Label nodes for each Route Select connection and attach them. You can directly
specify the returned label in each of these Label nodes.

Note: You can also use node connections after each route selection rule to set a call variable that
should be returned in out.map.properties for that route selection. For example, a CMB
call type could be set if the destined CMB was configured with multiple call strategies.
See the ICM documentation for additional information on scripting.

40

Reporting on Web Calls
Full reporting on Web requests routed through the ICM is not yet available. You can, however,
track ICM-routed Web requests through Collaboration reporting. You do so by associating an
ICM identifier with each Web call routed through the ICM.

To associate an ICM identifier with each Web call:
1. In the script that routes Web calls, include a Set node that uses the RouterCallDay and

RouterCallKey variables to assign a unique ICM identifier to an ICM call variable
associated with the request.

2. In the output map, map this ICM call variable to Collaboration call variable 1 (User1).

To generate a report that shows the call key:
1. In Collaboration Administration, select Reports > Requests.

The Reports: Requests screen appears.

2. For Request type, choose Extension. Specify any other criteria as desired and click run
report.

The Reports: Requests: results screen appears. The ICM identifier will appear in the
ApplStr1 column of the report.

41

Configuring Destinations
This section describes the different kinds of Trailhead destinations you may set up to handle
different Web requests. It includes these sections:

� Defining and naming destinations
� Setting a destination's type
� About Callonly destinations
� Determine which URL should be served by each destination
� Example 1: Setting up a Basic Callback destination
� Example 2: Setting up a destination for Web Collaboration
� Example 3: Setting up a non-calling destination
� Destinations for other script terminations

Defining and Naming Destinations
You define parameters for all destinations that can route calls using one file,
Trailhead.properties, which resides in the
\CiscoMB\servlet\properties\blender directory on the Media Blender server.

Begin by numbering and naming each destination using the Destination<n>.Name property. For
instance, these properties define two destinations:

Destination1.Name=
Destination2.Name=

(All properties that pertain to each destination are prefixed by the Destination<n>. prefix.)
Keep in mind that, even though the destinations are numbered sequentially, you can delete a
destination within the sequence without having to renumber your remaining destinations. For
example, if you originally configure destinations 1-5, and then delete destination 3, you need not
renumber destinations 4 and 5; Trailhead automatically accounts for the missing number.

Important: ICM labels that indicate destinations for Web requests are comprised of both the
location name and the routing address that should be used for the call. Your destination names
MUST match exactly the first portion of the ICM label associated with the destination. For
example if the ICM script returns the label Boston1-12345, the Trailhead destination name should
be Boston1. See Configuring Script Labels in this guide for more information.

The Trailhead medium on the Media Blender should have a full list of destinations, matching
every label that can be returned by the ICM script.

The Trailhead server, since it is using a DcRemote destination chooser, gets its destinations from
the Media Blender. Therefore, it needs only one destination, for SystemError.

42

Setting a Destination Type
In the Trailhead properties file you define the destination's type. The type of a destination
determines what kind of response will be given to Web requests that are routed to the destination.
Use the Destination<n>.Type property to establish the destination's type. Acceptable values are:

Destination Type Description
CALLONLY Basic Callback. This destination type queues the Web request internally, to

the switch.
COLLAB Web Collaboration. This destination type queues the web request to an

external system (e.g. the Collaboration Server).
NOCALL Non-calling. This destination type does not provide callback or collaboration

to the caller, but instead serves a URL that informs the caller that response is
unavailable. Use this type of destination when callback is unavailable or to
handle crank or troublesome calls.

About Callonly Destinations
Callonly destinations are destinations that provide basic callback only to Web requests. Requests
for basic callback are queued to an ACD using connections that have been configured as
CanQueue. (See Connection Types in this guide for more information.

Destinations are defined for the Trailhead medium, in Trailhead.properties on the Media
Blender server. For callonly destinations, you must establish the following four values:

Property in Trailhead.properties Description
destination<n>.name= The destination's name. Remember that the ICM script

must return a label that begins with this name to ensure
requests are submitted to the correct destination.

destination<n>.type= The destination's type, which should be callonly.
destination<n>.URL= The URL that should be served to the caller by this

destination.
destination<n>.queueconn= The connection through which the request should be

queued. This property should be set to the local server
name of the Trailhead server that will queue the call.
This property is explained further in the following
section.

43

Understanding the destination<n>.queueconn Property
The destination<n>.queueconn property identifies the Trailhead connection this
destination should used to queue basic callback requests. Each end of an RMI connection is
defined using connection<n>.localservername and
connection<n>.remoteservername properties. These properties identify both the
"Trailhead end" and the "Media Blender end" of the connection.

In the destination<n>.queueconn property, enter the value in the localservername
property of the "Trailhead end" of the connection. This value identifies the actual Media Blender
that will queue the call to the ACD.

Consider the following diagram:

44

This diagram illustrates a Trailhead/Media Blender configuration set up to provide both Web
collaboration and Basic callback. Media Blender 1 provides Web Collaboration and Basic
Callback. Media Blender 2 provides Basic Callback only. Because Connection 1 on the Trailhead
server is the only CanRoute connection, all destinations must be defined on Media Blender 1.
Both Connection 1 and 2 are CanQueue connections; both connections can provide Basic
Callback.

 The configuration contains two callonly destinations: destination 2 (bostoncallonly) and
destination 3 (seattle). When setting up the bostoncallonly destination, you must specify the
"Trailhead-end" of the connection that will be used to queue callonly requests. Connection 1 on
the Trailhead server will be used to queue callback requests for bostoncallonly. Therefore, the
dest2.queueconn= property should be set to blender1.

When setting up the seattle destination, you must specify the "Media Blender end" of the
connection that will queue calls routed to it. Connection 2 on the Trailhead server will be used to
queue callback requests for seattle. Therefore, the dest3.queueconn= property should be set
to blender2.

45

Determining the URL to be Served by Each Destination
In the Trailhead.properties file, you map each destination to a URL that should be
served to callers when requests are received. Use the Destination<n>.URL property to
specify appropriate URLs.

The following example sets the URL for a COLLAB (Collaboration) destination:

Destination1.URL=http://<servername>/success_v30.html

We provide sample URLs you can use and modify for your configurations. See Maintaining
HTML Pages and Forms in this guide for more information.

Note for NOCALL destinations: NOCALL destinations can serve a URL, or, instead, serve
only an HTTP error code and reason to the caller. If you choose to server an error code rather
than a URL, used the destination<n>errorcode and destination<n>errorreason properties. See
Configuration File Reference in this guide for information on these properties for both the
Trailhead server and the Trailhead medium.

46

Example 1: Setting up a Basic Callback Destination
Use this procedure for all of your destinations that will provide Basic Callback only.
In the Trailhead.properties file do the following:

1. List each Destination using the Destination<n>.Name property:

Destination1.Name=Boston1

2. Define the Destination type. Use CALLONLY for Basic Callback.

Destination1.Type=CALLONLY

3. Enter the URL that should be served for this destination using the
Destination<n>.URL property:

Destination1.URL=http://<trailhead-host-name>
/CiscoTH/pub/html/forms/blender/boston1.html

4. Define a connection to which this call should be queued:

Destination1.QueueConn=<local servername of connection to
use>

Important: This connection name should be the name listed in the localservername
property on the Trailhead server, the machine that ultimately processes the destination.

47

Example 2: Setting up a Destination for Web Collaboration
Use this procedure for all of your destinations that will provide Web Collaboration.
In the Trailhead.properties file:

1. List each destination using the Destination<n>.Name= property:

Destination2.Name=San Jose

2. Define the destination type. Use COLLAB for Web Collaboration.

Destination2.Type=COLLAB

3. Enter the URL that should be served for each destination using the Destination<n>URL
property.

Destination<2>.URL=http://<Trailhead server>
/CiscoTH/pub/html/forms/blender/success_v30.html

Note: If you are using the Cisco LocalDirector, the URL should point to the server where
you have moved the forms.

48

Example 3: Setting up a Noncalling Destination
You can use noncalling destinations to respond when no agents are available or to handle crank or
troublesome calls.

In the property file for the destination, do the following:

1. Define the destination using the Destination<n>.Name= property:

Destination3.Name=noagents

2. Define the destination type using the Destination<n>.Type property. Use
NOCALL for unavailable.

Destination3.Type=NOCALL

3. Enter the URL that should be served for each destination using the Destination<n>.URL
property.

Destination3.URL=http://<Trailhead server>
/CiscoTH/pub/html/Forms/blender/noagents.html

Note: Your site might use busy, ring, and error terminations to indicate down situations. See
Destinations for other ICM script terminations in this guide for more information.

49

Destinations for Other Script Terminations
In most cases, the ICM script returns labels configured to indicate busy, after hours, and error
situations. Such destinations correspond to labels set up in the ICM script.

However, your enterprise might configure a script to return ring or busy terminations in the ICM
script instead of creating separate labels for these situations. Ring, busy, and error terminations
differ from labels in that they do not direct the web request to a specific destination. In addition,
ICM sometimes returns a default termination if it cannot find an appropriate label for the request.
Should your ICM script be set up to return ring, busy, error, and default terminations, you must
set up destinations that correspond to these terminations. For instance, you should set up a system
busy destination and a system noagents destination to provide response to callers when the script
returns these labels. Replace <TRAILHEAD-HOST-NAME> with the real name in the following
properties in the Trailhead.properties file:

Destination9.Name=SysBusy
Destination9.Type=NOCALL
URL of the page - replace <TRAILHEAD-HOST-NAME> with real name
Destination9.URL=http://<TRAILHEAD-HOST-NAME>
/CiscoTH/pub/html/Forms/blender/sysbusy.html
Destination9.Substitute=false
Destination9.SystemBusy=true

Destination10.Name=sysnoagents
Destination10.Type=NOCALL
URL of the page - replace <TRAILHEAD-HOST-NAME> with real name
Destination10.URL=http://<TRAILHEAD-HOST-NAME>
/CiscoTH/pub/html/Forms/blender/sysnoagents.html
Destination10.Substitute=true
Destination10.SystemNoAgents=true

Destination11.Name=SysError
Destination11.Type=NOCALL
URL of the page - replace <TRAILHEAD-HOST-NAME> with real name
Destination11.URL=http://<TRAILHEAD-HOST-NAME>
/CiscoTH/pub/html/Forms/blender/syserror.html
#Destination11.ErrorCode=500
#Destination11.ErrorReason=System Error - please try later
Destination11.SystemError=true

Additional properties are included in the file for holidays and after hours terminations.

Note: For DcICM, the destination names must match the ICM labels.

50

Configuration File Reference
This section describes all of the properties you can use in all of the configuration files used for
Trailhead. It includes these files:

� On the Trailhead Server: trailhead.server.properties
� On the Media Blender server: the Trailhead medium (trailhead.properties)
� On the Media Blender server: the Input map
� On the Media Blender server: the Output map
� On the Media Blender server: the Peripheral Input map

Note: This section documents all properties you can use to configure behavior within these files.
Be aware that not all properties shown here will appear in your property files when you install the
software.

On the Trailhead Server: Trailhead.server.properties
You define the destinations used within your enterprise using the
Trailhead.server.properties file, which resides on the Trailhead machine in
\CiscoTH\servlet\properties\.

Note: Some properties require the URL of a Web page that should be served to callers for
different circumstances. We provide sample HTML you can use when setting up these pages.
These files reside in the directory \<CCS dir>\pub\html\Forms\blender on the
Cisco Collaboration Server. Some HTML files reside in the \CiscoTH\pub\html\Forms\
directory on the Trailhead server. Individual filenames are included in the appropriate property
description.

See Maintaining Trailhead HTML Pages and Forms in this guide for more information on
HTML files.

General Trailhead Properties
Use the properties in the Trailhead.server.properties file to configure the behavior of
Trailhead in a Cisco ICM environment.
adminname=

Property type: String
Default value: admin

This property identifies the administration username used to access the Trailhead control panel
(http://<server>/TrailheadAdmin). Note that this user name is automatically
encrypted; when you edit this file, the name will appear differently.

51

adminpw=

Property type: String
Default value: None

This property identifies the administration password used to access the Trailhead control panel
(http://<server>/TrailheadAdmin). Note that this user name is automatically
encrypted; when you edit this file, the name will appear differently.
autostart=

Property type: Boolean
Default value: False

This property indicates whether Trailhead should automatically start with the Web server. Be sure
not to set this property to true until you are sure that all of your media are properly configured.
destchooser=

Property type: string
Default: none

Required. This property identifies the destination chooser used by the Trailhead server. In ICM
Web configurations, this should be Com.WebLine.Trailhead.DcRemote.

Specifying Trailhead Connections
Use these properties to set up the connections from your Trailhead servers to your Trailhead
media. Note that, even though connections are numbered sequentially, you can delete a
connection within the sequence without having to renumber your remaining connections.
In the properties that follow, note that "local" properties refer to the Trailhead medium. Properties
that refer to "remote" values indicate the Trailhead server.

For more information on the Trailhead RMI connections, see Trailhead Components and
Connections.
connection<n>.localservername=

Property type: String
Default: trailhead

This property identifies the local name for this connection (the Trailhead server).
connection<n>.localregistryport=

Property type: Numeric
Default: 1099

This property identifies the local port for this connection (the Trailhead server).

52

connection<n>.localpassword=

Property type: String
Default: trailheadpw

This property identifies the password for this connection. The value here must match the value
indicated in the connection<n>.remotepassword property on the Trailhead medium. Note that this
password is automatically encrypted; when you edit this file, the value you enter here will appear
differently.
connection<n>.remoteservername=

Property type: String
Default: blender

This property identifies the remote name for this connection (the Trailhead medium). The value
here must match the value in the connection<n>.localservername property on the
Trailhead medium.
connection<n>.remotehost=

Property type: String
Default: None

This property identifies the remote host for this connection (the Trailhead medium).
connection<n>.remoteregistryport=

Property type: Numeric
Default: 1099

This property identifies the remote port for this connection. (the Trailhead medium.) The value
here must match the value entered in the localregistryport property on the Trailhead
medium.
connection<n>.remotepassword=

Property type: String
Default: blenderpw

This property identifies the password for this connection. The value here must match the value
indicated in the connection<n>.localpassword property on the Trailhead medium. Note
that this password is automatically encrypted; when you edit this file, the value you enter here
will appear differently.
connection<n>.canroute=

Property type: Boolean
Default: true

This property specifies whether this connection should appear on the list of connections that a
DcRemote destination choose tries to use when routing a session.

53

connection<n>.canqueue=

Property type: Boolean
Default: true

This property specifies whether this connection is usable to queue a call. This connection appears
in the destination<n>queueconn property on the Trailhead medium.
connection<n>disableautoconnect=

Property type: Boolean
Default: false

This property allows you to disable attempts by the Trailhead server to automatically connect to
the Trailhead medium. Set this property to true if inbound communication is not possible through
your firewall. This setting ensures that the Trailhead server does not try to automatically connect
to the Trailhead medium. Instead, the Trailhead medium will instead poll the Trailhead server
from behind the firewall.

If the firewall will allow both inbound and outbound communication, set this property to false.
This setting ensures that the Trailhead server will connect to the Trailhead medium automatically,
initiating two-way communication through the connections.

Specifying a System Error Destination
On the Trailhead server, you need set up only one destination to handle system error. Use these
properties to establish a system error destintation on the Trailhead server.
destination<n>.name=

Property type: Valid file name
Default:

This property defines the name for a destination in your configuration. When specifying
destinations, number each destination sequentially, beginning with 1.

Example:

destination1.name=SysError

destination<n>.type=

Property type: String
Default value:

This property lets you specify the type of response this destination will provide to web requests.
Acceptable values are:

Value Description
CALLONLY Basic Callback
COLLAB Web Collaboration
NOCALL Noncalling

54

On the Trailhead server, you need only set up a system error destination, which should be type
NOCALL.

destination<n>.URL=

Property type: Valid URL
Default value: none

This property maps a valid URL to a particular destination. When a request is routed to the
destination, Trailhead serves the URL specified here.

We provide sample URLs for different destination types. See Maintaining Trailhead HTML
Pages and Forms in this guide for more information for more information.

Note for NOCALL destinations: You can choose to server a URL here, or, instead, serve only
an HTTP error code and reason to the caller. If you choose to server an error code instead, do not
use this property; instead, use destination<n>errorcode and destination<n>errorreason,
described below.

destination<n>errorcode=

Property type: Integer
Default: none

This property specifies an error number to send the user, rather than a URL.You can enter 404,
500, or any HTTP error code to send these errors.

destination<n>errorreason

Property type: String
Default: System Error. Please try later.

This property explains the error specified in destination<n>errorcode.

Identifying the Callback Form
The callback form is the HTML page used to gather caller information to be submitted to the
ICM. Use this property to identify the callback form.
formurl=

Property type: String
Default value: None

Available in the general release of the product, this property identifies the callback form used to
gather information about the caller. We provide a sample, callform.html. See ICM Input:
The Web request and Maintaining HTML forms and pages in this guide for more information.

55

Setting up the Log
The following properties let you establish a rotation of log files generated by Trailhead. Trailhead
creates new log files until it reaches the number of logs specified in the logcount property.
logpath=

Property type: String
Default value:none

This property identifies the pathname to which logs are written. Be sure to end the path with a
forward slash.

loglines=

Property type: Numeric
Default value: 20000

This property sets the maximum number of lines per log file.

logcount=

Property type: Numeric
Default value: 2

This property indicates the number of log files in file rotation.

verbose=

Property type: Integer
Default value: 3

This property indicates the level of verbosity of logged messages. Acceptable values are:

1 -- Urgent
2 -- Critical
3 -- Important
4 -- Informational

timestampfiles=

Property type: boolean
Default: True

This property determines whether Trailhead appends log file names with the date and time of
creation. Log-1999-07-31-7-12_1.log

56

threadfloor=

Property type: Integer
Default: 20

This property specifies the minimum number of threads.

threadceiling=

Property type: Integer
Default: 20
This property specifies the maximum number of threads.

57

On the Media Blender Server: The Trailhead medium
(Trailhead.properties)
Setting up the Trailhead medium involves these steps:

1. Define the Trailhead medium on the Media Blender
2. Configure Trailhead properties

Define the Trailhead Medium on the Media Blender
You must identify Trailhead as a medium in the properties file for Media Blender
(blender.properties). In the Medium# property, enter Trailhead.properties.

Note: You must have the proper Blender key code to install and use the Trailhead medium.

Configure Trailhead Properties
Properties for configuring Trailhead are in the Trailhead.properties file that resides in
the \CiscoMB\servlet\properties\blender directory on the Blender server. (You
identify this file to Media Blender using the Medium property in the Blender properties file.)
Use this property file to determine which events the Trailhead medium can accept and share. See
"Event Filters" in the Media Blender Reference Guide for complete information about event filter
parameters.

Use each property only once in each properties file. If you include a property more than once in a
file, Media Blender automatically recognizes the setting in the last occurrence of the property,
overwriting the value in preceding occurrences.

In addition to CTI event filter parameters, Trailhead.properties contains these properties:
name=

Display only. This property identifies the medium. It should be set to Trailhead.
package=

This property displays the Java package name of this Blender medium. In this file, it must be set
to Com.WebLine.Blender.Trailhead. This package must be accessible to the servlet engine (either
JWS or servlet exec) through its CLASSPATH. See your Installation Guide for information on
setting the Classpath.
serverport=

Property type: Numeric
Default: None
This property identifies the port Trailhead uses to connect to the Web PG.

58

destchooser=

Property type: string
Default: Com.WebLine.Trailhead.DcICM

Required. This property identifies the destination chooser used by the Trailhead medium on the
Media Blender server. In ICM Web configurations, this should be
Com.WebLine.Trailhead.DcICM

Media Blender Startup Properties
Use these properties to adjust the amount of time Media Blender should wait for the incoming
Web PG connection at start up.

serverconntimeout=

Property type: numeric
Default: 120

This property specifies the amount of time Media Blender should wait for the incoming Web PG
connection at start up.
serverstartwithoutconn=

Property type: Boolean
Default: true

This property specifies whether to allow Media Blender to start if the timeout specified in
serverconntimeout is exceeded.

• If this property is set to true, the Media Blender will complete its own startup regardless of
whether it detects the incoming Web PG connection. Since the Web PG connection will not
exist, any route request messages sent to it will be routed to the System Error destination. The
Trailhead medium will continue to look for a connection and will generate alerts until one is
made.

• If this property is set to false, Media Blender will not start up if the Web PG connection is not
made within the serverconntimeout limit.

Specifying Trailhead Connections
Use these properties to set up the connections from your Trailhead servers to your Trailhead
media. Note that, even though connections are numbered sequentially, you can delete a
connection within the sequence without having to renumber your remaining connections.
In the properties that follow, note that "local" properties refer to the Trailhead medium. Properties
that refer to "remote" values indicate the Trailhead server.

59

connection<n>.localservername=

Property type: String
Default: blender

This property identifies the local name for this connection; that is, the name of the Trailhead
server end of the connection. This is the name that a destination must specify in a
destination<n>.queueconn property.

Note: In previous versions, the value for the Media Blender end of the connection was specified.

connection<n>.localregistryport=

Property type: Numeric
Default: 1099

This property identifies the local port for this connection (i.e. the Trailhead medium).

connection<n>.localpassword=

Property type: String
Default: blenderpw

This property identifies the password for this connection. The value here must match the value
indicated in the connection<n>.remotepassword property on the Trailhead server. Note that this
password is automatically encrypted; when you edit this file, the value you enter here will appear
as an encrypted code.

connection<n>.remoteservername=

Property type: String
Default: trailhead

This property identifies the remote name for this connection; that is, the Trailhead server. The
value here must match the value in the connection<n>localservername property on the Trailhead
server.

connection<n>.remotehost=

Property type: String
Default: None

This property identifies the host name of the Trailhead server.

60

connection<n>.remoteregistryport=

Property type: Numeric
Default: 1099

This property identifies the remote port for this connection; that is, the Trailhead server. The
value here must match the value entered in the localregistryport property on the
Trailhead server.
connection<n>.remotepassword=

Property type: String
Default: trailheadpw

This property identifies the password for this connection. The value here must match the value
indicated in the connection<n>.localserverpassword property on the Trailhead
server. Note that this password is automatically encrypted; when you edit this file, the value you
enter here will appear in an encrypted code.

Specifying Trailhead Destinations
Use these properties to set up your Trailhead destinations. Note that, even though connections are
numbered sequentially, you can delete a connection within the sequence without having to
renumber your remaining connections.

destination<n>.name=

Property type: String
Default: None

This property defines the name for a destination in your configuration. When specifying
destinations, number each destination sequentially, beginning with 1.

Example:
destination1.name=Boston1
destination2.name=Boston2

destination<n>.type=

Property type: String
Default:

This property lets you specify the type of response this destination will provide to web requests.
Acceptable values are:

Value Description
CALLONLY Basic Callback
COLLAB Web Collaboration
NOCALL Noncalling

61

destination<n>.queueconn=

Property type: string
Default: None

This property is required for CALLONLY destinations. It identifies the local server name of a
connection, defined on a Trailhead server, to which queue requests are sent for this destination.

Note: This is a change from previous versions when the value of the Trailhead medium on the
Media Blender end of the connection was used.

destination<n>.URL=

Property type: Valid URL
Default: None

This property maps a valid URL to a particular destination. When a request is routed to the
destination, Trailhead serves the URL specified here.

Note for NOCALL destinations: You can choose to serve a URL here, or, instead, serve only an
HTTP error code and reason to the caller. If you choose to serve an error code instead, do not use
this property; instead, use destination<n>errorcode and destination<n>errorreason, described
below.

We provide sample URLs for different destination types. See Maintaining Trailhead HTML
Pages and Forms in this guide for more information.

destination<n>.substitute=

Property type: Boolean
Default: None

This property lets you specify whether data will be dynamically substituted into HTML fields on
the URL specified for the destination. This property should be set to True for COLLAB
destinations.

destination<n>.errorcode=

Property type: Integer
Default: None

This property specifies that a HTTP error code should be sent to a user when callback is
unavailable or to handle crank or troublesome calls. Use this property for NOCALL destinations
if you want serve users an error code rather than an HTML page explaining the problem. If you
use this property, do not specify a URL in the destination<n>.URL property for this
destination.

Acceptable values are 404, 500, or any numeric HTTP error code.

62

destination<n>.errorreason

Property type: string
DefaultNone

This property explains the error specified in destination<n>errorcode.

Setting System Defaults
The following properties let you specify default destinations that should be used when the ICM
script returns any of these labels:

� ring
� busy
� default

In addition, you can set a default for when the ICM script returns an error.

destination<n>.systemdefault=

Property type: Boolean
Default: False

This property lets you specify whether the destination should be used whenever the ICM script
returns a default label.

destination<n>.systembusy=

Property type: Boolean
Default: false

This property lets you specify whether the destination should be used whenever the ICM script
returns a busy label.

destination<n>.systemnoagents

Property type: Boolean
Default: false

This property lets you specify whether the destination should be used whenever the ICM script
returns a ring label.

destination<n>.systemerror=

Property type: Boolean
Default: false

This property lets you specify whether the destination should be used whenever the ICM script
returns an error label or any error occurs.

63

Specifying the Trailhead Input and Output Maps
Use these properties to identify the input and output maps used in your system.

inmap=

Property type: Filename
Default: in.map.properties

This property identifies the file used to translate web-based data into data that can be used by the
ICM scripts. See the Input Map in this guide for more information

outmap=

Property type: Filename
Default: out.map.properties

This property identifies the file used to translate information returned by the ICM script into
textual information that can be used by the Collaboration Server. See Creating the Output Map
for more information

ICM Label Information

icmlabeldelimiter=

Property type: Character
Default: - (hyphen)

This property identifies the delimiter used to separate the two distinct portions of the ICM label
output by scripts.Use this property if you are not using the IcmLabelLength method of parsing
ICM labels. For information on ICM script labels, see ICM Script Label Configuration in this
guide.

Note: If you specify a delimiter here, do not specify a label length using the icmlabellength
property, explained below.

icmlabellength=

Property type: Numeric
Default: None

This property lets you determine which portion of the ICM label should be used as a routing
address based on length. For more information, see ICM Script Label Configuration in this guide.
Note: If you specify a length here, do not specify a label delimiter using the
icmlabeldelimiter property, explained above.

64

Verifying URLs

checkurls=

Property type: Boolean
Default: False

This property determines whether Trailhead or the Trailhead Medium should check for the
existence of the URLs referred to by each destination.

On the Media Blender Server: The Input Map
(in.map.properties)
Trailhead's Input map (in.map.properties) is a text file that maps fields found on the
Trailhead callback form with ICM VRU fields. The format of each entry is as follows:

<ICM value> = <Web value>

For instance, the file might contain this entry:

CED=Route

This entry specifies that the value in the RouteAddr field on the web request is equal to the DN
(Dialed Number) value on the ICM system. In this way, the Input Map translates the information
from the incoming web request and populates a route request message submitted to ICM.
Note that you can map literal strings to ICM variables by enclosing strings in quotes. For
example, the following entry maps the literal 1000 to the DN field

DN="1000"

In this case, the string 1000 indicates a script number on the ICM. Passing a literal script number
through the DN field ensures the same script is run for all web requests.

A sample input map appears below:

DN="1000"
ANI=PhoneNumber
CED=Route
CALLVAR1=WantsCollab
CALLVAR2=User2
CALLVAR3=User3
CALLVAR4=User4
CALLVAR5=Host
CALLVAR6=Referer
CALLVAR7=Accept-Language
CALLVAR8=CallbackDelay
CALLVAR9=User-Agent
CALLVAR10=

65

On the Media Blender Server: The Output Map
(out.map.properties)
Trailhead's Output Map (out.map.properties) is a text file that maps ICM data with
textual data that can be recognized by the Collaboration Server. The output map repopulates the
caller data with values that have been returned by the ICM script.

The format of each entry in the file is as follows:

<ICM value> = <Call form value>

For instance, the file might contain this entry:

DN=PhoneNum

This entry specifies that the value in the DN field on the ICM system is equal to the phone
number field on the Collaboration Server. In this way, the Input Map translates the information
from the ICM script into data that can be used by the CCS.

We provide two sample output maps:
out.map.properties:

DN=
ANI=Route
CED=Name
CALLVAR1=User1
CALLVAR2=User2
CALLVAR3=User3
CALLVAR4=User4
CALLVAR5=Host
CALLVAR6=Referer
CALLVAR7=Accept-Language
CALLVAR8=CallbackDelay
CALLVAR9=User-Agent
CALLVAR10=

callvars-out.map.properties

CALLVAR1=callvar1
CALLVAR2=callvar2
CALLVAR3=callvar3
CALLVAR4=callvar4
CALLVAR5=callvar5
CALLVAR6=callvar6
CALLVAR7=callvar7
CALLVAR8=callvar8
CALLVAR9=callvar9
CALLVAR10=callvar10

66

On the Media Blender Server: The Peripheral Input Map
Trailhead's peripheral input map lets you load callback form data into Cisco ECTI server call
variables. To use this feature, you must set up a text file called an input map between the CTI
server and the Web callback form. This file is called cti.in.map.properties and resides
in the \CiscoMB\servlet\properties directory. The format of each entry is as follows:

<ICM variable> = <Web variable>

For instance, the file might contain this entry:

CALLVAR2=user1

This entry would ensure that the value in the User1 field on the callback form is passed into Call
Variable 2 on the CTI server.

Note that you can set the CTI server variable to a literal string rather than a Web variable. For
instance, consider the following example entry:

CALLVAR1="Web Call"

This line ensures that the words "Web Call" are passed to call variable 1.

We provide two sample CTI peripheral input maps:

cti.in.map.properties:

CALLVAR1="Web Call"
CALLVAR2=user1
CALLVAR3=user2
#CALLVAR4=user3
#CALLVAR5=name
#CALLVAR6=host
#CALLVAR7=referer
#CALLVAR8=callbackdelay
#CALLVAR9=
#CALLVAR10=

callvars-cti.in.map.properties

 CALLVAR1=callvar1
 CALLVAR2=callvar2
 CALLVAR3=callvar3
 CALLVAR4=callvar4
 CALLVAR5=callvar5
 CALLVAR6=callvar6
 CALLVAR7=callvar7
 CALLVAR8=callvar8
 CALLVAR9=callvar9
 CALLVAR10=callvar10

67

Maintaining HTML Pages and Forms
Our sample HTML pages provide for dynamic name substitution; Trailhead retrieves the caller
name and number from the callback form and inserts them into the appropriate HTML page. The
following HTML source code is taken from one of our sample pages, boston1.html.

Note: All Trailhead forms must be served by the Trailhead server; this ensures proper substitution
of the invoking URL.

HTML File Location
The directories \<CCS dir>\pub\html\Forms\ on the Cisco Collaboration Server and
\CiscoTH\pub\html\Forms\ on the Trailhead server contain samples of HTML pages
and forms that you can modify to suit your needs. You should, however, be familiar with HTML
if you intend to make changes. Changes you make here can affect the system functionality.
If you do make extensive changes to these forms, copy the modified forms to another location on
the server, but not in the Media Blender tree. Then, if you decide to upgrade Media Blender, you
will not lose your customized forms.

Note: Always make a backup copy before altering an HTML page.

This section describes the Trailhead callback form and the HTML pages used by Trailhead to
respond to different scenarios. It includes these sections:

� The Callback form
� The Web Collaboration HTML page
� The Basic Callback HTML page
� Pages for noncalling destinations

68

The Trailhead Start Page
We provide a sample page that links to the Trailhead server: launchTrailhead.html. You can use
this sample when designing how your Web site will provide access to Trailhead. The link to the
Trailhead server is shown below:
http://<servername>/servlet/Trailhead

The Callback Form
The callback form is served to a caller who has requested callback from the Web. This form
provides Trailhead with information about the caller, such as the caller's name and phone number,
as well as the code to which the call should be routed.

The callback form should be accessed indrectly through the Trailhead servlet, using an HTML
link containing the URL: http://<servername>/servlet/Trailhead. This way, the
Web page containing the link (the callback button) will be accessible to the Collaboration server.

The callback HTML forms used in Trailhead configurations should be served by the Trailhead
server. If a Web site just points to the form without getting the substituted form from Trailhead,
then the site will not obtain the correct invoking URL; that is, the URL from which the caller
requested callback.

The fields on the callback form are described in detail in ICM Input: The Web request.

69

The Web Collaboration Pages
You must maintain an HTML page to be served to callers whose requests have been routed to a
Web Collaboration destination. We provide a sample page: success-v30.html, explained
below.

success-v30.html

This sample page is designed to be served to a caller who has successfully submitted a request for
blended Collaboration. This page launches a Collaboration Server session.

Note that this form retrieves the caller's name and phone number from callform.html, placing it in
the text.

If the Collaboration Server is running on a different computer than Trailhead, you must edit
whichever success file you are using so that it points to the correct Collaboration server. A hidden
form appears at the end of the HTML source code of both of these files. You specify the CCS
server name at the beginning of this form, using the action field. Insert
http:<collaboration-server-name> immediately before
/servlet/Com.WebLine.WebLine.Html.PageCreator, as shown below:

Other Collaboration Samples
We include several other examples of HTML pages you might set up to provide Web
Collaboration. They are:

� boston1.html
� boston2.html
� sanjose1.html
� sanjose2.html
� callvars-sanjose1.html (See Passing data to the Cisco ECTI server in this guide

for more information.)

70

The Basic Callback Page
You must maintain HTML pages that will be served to callers who will receive Basic callback in
response to a Web request. We provide several samples of Basic Callback pages:

� bostoncallonly.html
� sanjosecallonly.html

Note that these forms retrieve the caller's name and phone number from callform.html, and
place it in the text.

A Collaboration session is not initiated; instead, Trailhead stores each request and Media Blender
then retrieves the requests and queues them to the switch.

Pages for Noncalling Destinations
Sometimes callers request callback during hours when the phone system is down. We provide
sample HTML pages you can use to design your own pages to cover these instances.

For instance, you may alter these pages so that they request user information; that way, you can
retrieve valuable information about potential customers even when callback is prohibited.

afterhours.html

This sample Web page is designed to be served to callers who place calls outside of your call
center's normal hours of operation.

sysnoagents.html

This sample page is designed to be served to the caller when no agents are available for callback.

syserror.html

This sample page informs the caller that a technical problem prohibits response.

sysbusy.html

The sample page informs the caller that all agents are busy.

holiday.html

This sample page informs the caller that the contact center is closed due to a holiday.

71

 Index

A

administration ... 7
autoconnect ... 11
automatic number identification (ANI)... 29, 34, 64, 65

C

caller entered digits (CED) ... 29, 34, 64, 65
CanQueue property ... 13, 42
CanRoute property.. 13
components ... 8, 11, 17
configuration files ... 50, 57, 64, 65
connections ... 11, 50, 57
CTI server ... 30
CTI variables .. 32, 66

D

destinations ... 14, 18, 41, 42, 45, 46, 47, 48, 49, 70
dialed number (DN) .. 29, 34, 64, 65
duplexed PG.. 22

F

failover .. 21, 24
files ... 50, 57, 64, 65
firewall communication .. 11, 19

H

HTML pages ... 27, 45, 67, 68, 69, 70
HTTPproxy mode ... 19

I

ICM Script .. 27, 34, 38
ICM Web Option .. 8, 17, 27
input map .. 29, 30, 64
Intelligent Contact Management... 8, 27, 34, 35, 38, 39

L

LocalDirector .. 21, 22, 24, 25

N

networking configuration.. 19

O

outbound socket connections .. 19
output map .. 31, 65

P

Peripheral inmap ... 32, 66

R

Remote Method Invocation (RMI) ... 11, 50, 57

72

reporting.. 40
Router Call Key .. 31, 35

S

script ... 34, 35, 38
system defaults.. 49

T

Trailhead ... 7, 11, 50, 57, 68
Transparent HTTP mode... 19

W

Web PG... 22

	€
	Cisco ICM Web Option:� Trailhead Configuration and� Administration Guide
	Cisco Trailhead, Version 4.0
	Table of Contents

	Introduction
	Intended Audience and Scope
	Additional Information
	The Trailhead Menu

	System Overview
	ICM Web Option Components
	Cisco Collaboration Server (CCS)
	Cisco Trailhead (CTH)
	Cisco Media Blender (CMB)
	Cisco Intelligent Contact Management (ICM)

	Cisco ICM Web Peripheral Gateway (Web PG)
	Cisco Enterprise Computer Telephony Integration (ECTI) Server
	Automatic Call Distributor (ACD)

	Trailhead Components and Connections
	About Trailhead connections
	Connection Types
	To allow route requests to get from the Trailhead server to the Web PG
	To initiate Basic Callback requests

	Understanding Trailhead Destinations
	Destinations that Provide Response to Web Callback Requests
	How Destinations Reflect Your Call Centers

	Destinations that Handle Situations When Response is Not Available
	Destinations that Handle ring, busy, error, and default ICM Conditions
	Call Flow Through the Cisco ICM Web Option
	About Destination Choosers

	Firewall Configuration and Networking
	Firewall Configurations
	Polling Over Outbound Socket Connections Mode
	Two-way Socket Connection Mode
	Classic HTTP Proxy Mode
	Transparent HTTP Mode

	Networking Considerations

	Trailhead Failover Using LocalDirector
	How LocalDirector Helps
	Limitations
	Configuration for Trailhead Failover
	Trailhead and Media Blender Connections
	Trailhead Destinations
	
	Step 1: Create Directory and Move Forms
	Step 2: Configure the Property Files

	Duplexed Web PG
	Redundant LocalDirectors

	Setting up the LocalDirector
	Installing LocalDirector
	Creating a Virtual Server
	Creating the Probe
	Sample LocalDirector Configuration File

	Understanding ICM input and output
	ICM Input: The Web request
	Visible fields
	Hidden fields
	Customizing your form

	The Route Request Message to the Web PG

	Mapping ICM and Web Data
	Mapping Web Data to Route Request Variables
	Using ICM Call Variable 10 (Lucent switches only)

	Mapping ICM Variables to Web Variables
	Using the Output Map to Enhance ICM/Collaboration Reporting
	€

	Passing Data to the ECTI Server and Back to the Web
	Sample files
	callvars-cti.in.map.properties
	callvar-out.map.properties
	callvars-sanjose1.html

	ICM Script Considerations
	How the ICM Script is Selected
	Using a Variable or Literal in the Dialed Number Field
	Understanding the ICM Script
	ICM Script Tasks
	Evaluate Available Resources
	Choose between Collaboration and Basic Callback
	Associate a Unique ICM Identifier with the Web request (optional)
	Return Labels that Correspond to Trailhead Destinations

	Example

	ICM Script Label Configuration
	Reserving a number of characters for the destination name

	ICM Scripting Tip
	Edit in.map.properties on the Media Blender Server
	Configure the ICM
	Set up the ICM routing script

	Reporting on Web Calls
	
	
	To associate an ICM identifier with each Web call:
	To generate a report that shows the call key:

	Configuring Destinations
	Defining and Naming Destinations
	Setting a Destination Type
	About Callonly Destinations
	Understanding the destination<n>.queueconn Property
	Determining the URL to be Served by Each Destination
	Example 1: Setting up a Basic Callback Destination
	Example 2: Setting up a Destination for Web Collaboration
	Example 3: Setting up a Noncalling Destination
	Destinations for Other Script Terminations

	Configuration File Reference
	On the Trailhead Server: Trailhead.server.properties
	General Trailhead Properties
	adminname=
	adminpw=
	autostart=
	destchooser=

	Specifying Trailhead Connections
	connection<n>.localservername=
	connection<n>.localregistryport=
	connection<n>.localpassword=
	connection<n>.remoteservername=
	connection<n>.remotehost=
	connection<n>.remoteregistryport=
	connection<n>.remotepassword=
	connection<n>.canroute=
	connection<n>.canqueue=
	connection<n>disableautoconnect=

	Specifying a System Error Destination
	destination<n>.name=
	destination<n>.type=
	destination<n>.URL=
	destination<n>errorcode=
	destination<n>errorreason

	Identifying the Callback Form
	formurl=

	Setting up the Log
	logpath=
	loglines=
	logcount=
	verbose=
	timestampfiles=
	threadfloor=
	threadceiling=

	On the Media Blender Server: The Trailhead medium (Trailhead.properties)
	Define the Trailhead Medium on the Media Blender
	Configure Trailhead Properties
	name=
	package=
	serverport=
	destchooser=

	Media Blender Startup Properties
	serverconntimeout=
	serverstartwithoutconn=

	Specifying Trailhead Connections
	connection<n>.localservername=
	connection<n>.localregistryport=
	connection<n>.localpassword=
	connection<n>.remoteservername=
	connection<n>.remotehost=
	connection<n>.remoteregistryport=
	connection<n>.remotepassword=

	Specifying Trailhead Destinations
	destination<n>.name=
	destination<n>.type=
	destination<n>.queueconn=
	destination<n>.URL=
	destination<n>.substitute=
	destination<n>.errorcode=
	destination<n>.errorreason

	Setting System Defaults
	destination<n>.systemdefault=
	destination<n>.systembusy=
	destination<n>.systemnoagents
	destination<n>.systemerror=

	Specifying the Trailhead Input and Output Maps
	inmap=
	outmap=

	ICM Label Information
	icmlabeldelimiter=
	icmlabellength=

	Verifying URLs
	checkurls=

	On the Media Blender Server: The Input Map (in.map.properties)
	On the Media Blender Server: The Output Map (out.map.properties)
	
	out.map.properties:
	callvars-out.map.properties

	On the Media Blender Server: The Peripheral Input Map
	
	cti.in.map.properties:
	callvars-cti.in.map.properties

	Maintaining HTML Pages and Forms
	HTML File Location
	The Trailhead Start Page
	The Callback Form
	The Web Collaboration Pages
	success-v30.html
	Other Collaboration Samples

	The Basic Callback Page
	Pages for Noncalling Destinations
	
	afterhours.html
	sysnoagents.html
	syserror.html
	sysbusy.html
	holiday.html

	Index

