mene Cisco Customer
N

Interaction Suite

Cisco ICM Web Option:
Trailhead Configuration and
Administration Guide

Cisco Trailhead, Version 4.0

Cisco Trailhead, Version 4.0
Copyright © 2000, Cisco Systems, Inc., all rights reserved.

Access Registrar, AccessPath, Are You Ready, ATM Director, Browse with Me, CCDA, CCDE,
CCDP,CCIE, CCNA, CCNP, CCsI, CD-PAC, CiscoL.ink, the Cisco NetWorks logo, Cisco Powered
Network logo, Cisco Systems Networking Academy, Fast Step, FireRunner, Follow Me Browsing,
FormShare, GigaStack, IGX, Intelligence in the Optical Core, Internet Quotient, IP/VVC, iQ Breakthrough,
iQ Expertise, iQ FastTrack, iQuick Study, iQ Readiness Scorecard, The iQ Logo, Kernel Proxy, MGX,
Natural Network Viewer, Network Registrar, the Networkers logo, Packet, PIX, Point and Click
Internetworking, Policy Builder, RateMUX, ReyMaster, ReyView, ScriptShare, Secure Script, Shop with
Me, SlideCast, SMARTnet, SVX, TrafficDirector, TransPath, VlanDirector, Voice LAN, Wavelength
Router, Workgroup Director, and Workgroup Stack are trademarks of Cisco Systems, Inc.; Changing the
Way We Work, Live, Play, and Learn, Empowering the Internet Generation, are service marks of Cisco
Systems, Inc.; and Aironet, ASIST, BPX, Catalyst, Cisco, the Cisco Certified Internetwork Expert Logo,
Cisco 10S, the Cisco 10S logo, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems
logo, Collision Free, Enterprise/Solver, EtherChannel, EtherSwitch, FastHub, FastLink, FastPAD, 10S,
IP/ITV, IPX, LightStream, LightSwitch, MICA, NetRanger, Post-Routing, Pre-Routing, Registrar,
StrataView Plus, Stratm, SwitchProbe, TeleRouter, are registered trademarks of Cisco Systems, Inc., or its
affiliates in the U.S. and certain other countries.

All other brands, names, or trademarks mentioned in this document/website are the property of their
respective owners. The use of the word partner does not imply a partnership relationship between Cisco and
any of its resellers. (0008R)

Table of Contents

[Tntroduction 6]
intended Audience and Scope 6|
lAdditional Information 6|
[The Trailhead Menu 7|

System Overview 8|
[ICM Web Option Components 9
Cisco Collaboration Server (CCS) 9
Cisco Trailhead (CTH) 9
Cisco Media Blender (CMB) 9
Cisco Intelligent Contact Management (ICM) 10
Cisco ICM Web Peripheral Gateway (Web PG) 10
Cisco Enterprise Computer Telephony Integration (ECTI) Server 10
Automatic Call Distributor (ACD) 10
[Trailhead Components and Connections 11|
{About Trailhead connections 11]
QoTnnection Types _ _ 13

o0 allow route requests to get from the Trailhead server to the Web PG 13

o Initiate Basic Callback requests 13
Understanding Trailhead Destinations 14|
Destinations that Provide Response to Web Callback Requests 14
ow Destinations Reflect Your Call Centers 15
Destinations that Handle Situations When Response is Not Available 15|
Destinations that Handle ring, busy, error, and default ICM Conditions 16|
Call Flow Through the Cisco ICM Web Option 17
IAbout Destination Choosers 18|
Firewall Configuration and Networking 19|
Firewall Configurations _ 19
olling Over Outbound Socket Connections Mode 19
wo-way Socket Connection Mode 19
Classic HTTP Proxy Mode 20
Transparent HTTP Mode 20
Networking Considerations 20|
[Trailhead Failover Using LocalDirector 21|
How LocalDirector Helps 21|
Limitations 22|
Configuration for Trailhead Failover 22|

Trailhead and Media Blender Connections 22
Trailhead Destinations 22
uplexed Web PG 23
edundant LocalDirectors 23
Setting up the LocalDirector 24
nstalling LocalDirector 24
Creating a Virtual Server 24
Creating the Probe 25
Sample LocalDirector Configuration File 26
Understanding ICM input and output 27|
ICM Input: The Web request 27
\Visible fields 28
Hidden fields 28
Customizing your form 29

[The Route Request Message to the Web PG 29|
Mapping ICM and Web Data 30|
apping Web Data to Route Request Variables 30

sing ICM Call Variable 10 (Lucent switches only) 30
apping ICM Variables to Web Variables _ 31

sing the Output Map to Enhance ICM/Collaboration Reporting 31
@Esinq Data to the ECTI Server and Back to the Web 32
ample files 33

ICM Script Considerations 34|
How the ICM Script is Selected 34|
Using a Variable or Literal in the Dialed Number Field 34|
Understanding the ICM Script 35
CM Script Tasks 35
Fxample 37
ICM Script Label Configuration 38
eserving a number of characters for the destination name 38

ICM Scripting Tip 39
dit in.map.properties on the Media Blender Server 39
Configure the ICM 39

Set up the ICM routing script 39
Reporting on Web Calls 40|
Configuring Destinations 41|
Defining and Naming Destinations 41|
Setting a Destination Type 42|
{About Callonly Destinations 42|
Understanding the dest i nat i on<n>. queueconn Property 43|
Determining the URL to be Served by Each Destination 45|
Example 1: Setting up a Basic Callback Destination 46|

Example 2: Setting up a Destination for Web Collaboration 47|

Example 3: Setting up a Noncalling Destination 48|
Destinations for Other Script Terminations 49|
Configuration File Reference 50|
On the Trailhead Server: Trailhead.server.properties 50
(General Trailhead Properties 50
Specifying Trailhead Connections 51
Specifying a System Error Destination 53
dentifying the Callback Form 54
Setting up the Log 55
On the Media Blender Server: The Trailhead medium (Trailhead.properties) 57
Define the Trailhead Medium on the Media Blender 57|
Configure Trailhead Properties 57|
Media Blender Startup Properties 58
Serverconnti meout = 58
Bpecifying Trailhead Connections 58
Specifying Trailhead Destinations 60
Setting System_DefauIts 62
'§pecifying the Trailhead Input and Output Maps 63
CM Label Information 63
Verifying URLs 64
On the Media Blender Server: The Input Map (in.map.properties) 64|
On the Media Blender Server: The Output Map (out.map.properties) 65|
On the Media Blender Server: The Peripheral Input Map 66|
Maintaining HTML Pages and Forms 67|
HTML File Location 67|
[The Trailhead Start Page 68
[The Callback Form 68|
[The Web Collaboration Pages 69
success-v30. ht ni 69
Other Collaboration Samples 69
[The Basic Callback Page 70|
Pages for Noncalling Destinations 70|
[Index 71|

Introduction

This document describes the configuration of Cisco Trailhead, a Web server application designed
to process Web-initiated requests for live contact. Cisco Trailhead collects Web requests and
submits them to the Intelligent Contact Management (ICM) Central Controller, which routes the
requests to appropriate destinations.

Intended Audience and Scope

This document is written for system administrators of the Trailhead software. It assumes proper
configuration of other products within the configuration.

Additional Information

Several software components comprise the Cisco solution for incorporating Web contact
functionality into ICM routing. The following table lists each of these components and where to
find more information about them.

Product Documentation

Cisco ICM Web Option Cisco ICM Web Option Overview

Cisco ICM Web Option Implementation Map
ICM configuration and script set up|Cisco ICR System Manager Guide (and the switch
supplements for that guide)

Media Blender Media Blender Configuration Handbook
Media Blender Reference guide

Media Blender online Help

Cisco Collaboration Server Collaboration Administration and Reporting
Collaboration Agent and Caller online Help
Collaboration Administration online Help

The Trailhead Menu

Trailhead provides Web-based administration, allowing the administrator to gather information
and troubleshoot problems from a simple Web browser.

1. Open a Web browser and go to this URL:
http://<servernanme>/ Tr ai | headAdmi n.
The Trailhead Administration login page appears.

2. Atthe Trailhead login page, enter your username and password and click Log In.
The Trailhead Menu appears, as shown below:

Trailhead
Menu

Summary
Statistics
Properties

Help
Suppert

Trailhead

003, T00.000. 0006

Mow: Tue Dec 14
10:10:07 PST 1999
Start: Mon Dec 13
T4:35:22 PST 1999
Lip for 79 howrs, 3
minutes, 18 saconds

The Trailhead Menu displays all of the commands you can execute when administering
Trailhead. In addition, it displays some constant information in the footer:

¢ Product name and version
e Current time

e Start time

¢ Run duration

The Help link provides detailed information about all of the features available on the Control
Panel. Refer to the online Help for more information.

System Overview

The Cisco ICM Web Option incorporates the routing of Web-initiated requests with the routing
capability of the Cisco Intelligent Contact Management (ICM) software. The ICM product allows
enterprises to distribute toll-free telephone calls among centers in different geographic locations.
With this integration, the ICM Central Controller is able to route Web requests for contact as
well.

Integral to the solution is Cisco Trailhead, an application that accepts Web requests and submits
them to the Web Peripheral Gateway (Web PG), which in turn submits them to the ICM Central
Controller for routing. The Web PG effectively translates incoming data from the Web into
information that can be interpreted by the ICM Central Controller, which can then route Web
requests to appropriate sites, just as it would a telephone call.

Trailhead also accepts output from the ICM script, ensuring that each location handles the Web
request appropriately. Locations that handle Web requests can provide these types of responses:

* Basic Callback--With Basic Callback, the caller who placed a Web request receives a
phone call back from an agent.

e Callback with Web Collaboration--Callback with Web Collaboration allows callers to
interact and share information with agents over the Web. In addition to receiving a phone
call back from an agent, the caller and agent can share Web pages, forms, or applications
using a Web browser.

ICM Web Option Components

The following figure illustrates the components of a simple ICM Web Option configuration.

“—

(L % P T Central
P Controller

Firewall

Cizco Collaboration Server

[s—
-. E
—
=] ! = .-_“EL ==
1
Cizco Media Blender ICh ACD PG
ACD

For help in deploying the ICM Web Option product, see the Cisco ICM Web Option
Implementation Map included with this release.

Cisco Collaboration Server (CCS)

CCS, Version 3.01, enables the World Wide Web as a point of contact between an enterprise and
its customers. It allows a customer to interact with live call center agents using the Internet.

Cisco Trailhead (CTH)

CTH, Version 4.0, translates incoming Web data into information that can be interpreted by the
ICM software. Once the ICM script has routed the call, Trailhead also interprets ICM data and
uses it to redirect the caller to the selected appropriate call center.

Cisco Media Blender (CMB)

CMB, Version 4.0, enables the Automatic Call Distributor (ACD) to accept and handle Web-
based requests, providing for blended Web Collaboration. Media Blender allows you to
synchronize your Web-based and ACD-based call center systems by sharing Computer
Telephony Integration (CTI) events among participating media. A typical blended configuration
includes a Collaboration medium, an ACD medium, and a Trailhead medium.

Cisco Intelligent Contact Management (ICM)

ICM, Version 4.1.4, routes incoming Web-requests to the appropriate site and agent skill group.
Routing logic is established in an ICM script, which returns a label that determines the final
destination of the Web request.

Cisco ICM Web Peripheral Gateway (Web PG)

The Web PG allows the Trailhead medium to communicate with the ICM system. The Web PG in
the ICM Web Option configuration must be set up as the Routing Client. The Routing client
requests a route from the ICM, receives a response, and delivers the call to the specified
destination.

Cisco Enterprise Computer Telephony Integration (ECTI) Server

ECTI provides the computer telephony integration (CT]I) interface that Media Blender can use to
communicate with the ACD. Versions 3.1 and 4.0 of the Media Blender support only the ECTI
driver.

Automatic Call Distributor (ACD)

The ACD provides queueing and agent selection for the call center. The following ACDs are
supported for this release:

Aspect CallCenter, Versions 6.2 and 7.2
Lucenty Definity G3, Version 6.3

Nortel Meridianl, Version 24, SCCS 1.5
Nortel Symposium, Versions 1.5 and 3.0
NEC NEAX 2400, Version 4.12

Note that the Meridian, Symposium, and NEC switches do not support the predictive CTI
strategy.

For more information about the Cisco ICM Web Option, see the ICM Web Option Overview,
included with this release.

10

Trailhead Components and Connections

Trailhead is made up of two software components: the Trailhead server, which resides outside the
corporate firewall, and the Trailhead medium, which resides inside the firewall on the Media
Blender machine. Each component is configured using a Tr ai | head. properti es file.

The Trailhead server and the Trailhead medium communicate with each other using connections.
Outside the firewall, Trailhead's connections query whether the Trailhead media inside the
firewall can route calls. Inside the firewall, the Trailhead medium'’s connections query Trailhead
for any alerts and statistics.

a
S The Trailhead server
: uzes the connection to
;’ Cizcn determine whether the
: Trailead medium can route callz
Server 1 and sends gueue requests
The Trailhead medium for CALLOMNLY.
uzes the connection to -
cuery the Trailhead server i
for alerts and statistics //"
s ,:’
CC5 || CTH Ll cm
tzdium tedium tedium

Cisco hedia Blender 1
[ChiB]

The Trailhead medium can be set up to perform two functions:

* Routing of requests from the Trailhead server to the Web PG
e Initiating Basic Callback requests

Note that you can set up a Trailhead medium to perform either or both of these tasks.

About Trailhead connections

The Trailhead server and the Trailhead medium communicate with each other through the
corporate firewall. To accommodate this, the Trailhead connection uses the Sun Microsystems
Remote Method Invocation (RMI). With such a connection, an RMI registry exists on both sides
of the firewall. Each registry identifies its machine to the machine on the other side of the
firewall.

When defining Trailhead connections, you need to define your connections in property files on
both the Trailhead medium and the Trailhead server. The properties files are:

e \CiscoTH servl et\properties\Trail head. server. properties (on
the Trailhead server)

e \CG scoMB\servlet\properties\blender\Trail head. properties (the
Trailhead medium on the Media Blender machine)

11

Each connection registers at its registry port using its local server name. The connection accepts
incoming requests that are made to its registry port, as long the request provides the password

(local password) to the server.

For one side of the RMI connection to connect to the other side, it needs to know the hostname
and/or IP address, the port, and server name to request and the password to provide. You can set

these on each side of the firewall using Trai | h

ead. properties (forthe Trailhead

medium) and Tr ai | head. server. properties (forthe Trailhead server.) The following
image illustrates the properties used on both sides of the firewall to identify the RMI connection:

(]

Each property file must identify
both sides ofthe Rkl connection;
the jfocs! walues on one side must

match the reroile values on the

other

Trailhead.properties

onnections 2 localsservernans=

connection< g localregistry port=

nections & localpassword=

connection< mremncotehost =

onnectiond Mrenotesservernanss

connections mremnoteregistryport =

acggﬂfftiun<ﬂ>remutepa33wurd=

Trailhead.server.properties

connections mremotehost =

nnections & localservernans=

connection< & localregistry port=

nections & localpassword=

connections Mremoteservernans=
connections Hrenoteregistryport =
ections Mrremctepasswords

<

For complete information on each of these properties, see Configuration file reference.

12

Connection Types

Connections on the Trailhead server can be configured as CanRout e and CanQueue
connections.

CanRout e connections are connections that can be used to route a session to a Trailhead Web
Collaboration destination. If the Media Blender at the other end of the connection is connected to
a Web PG for routing Web callback requests, the connection can route.

CanQueue connections are connections that can be used to queue calls using Basic Callback
destinations. CanQueue is used for Basic Callback only. If the Media Blender at the other end of
the connection is used for Basic Callback, then the connection should be set so it can queue.

Note that you can set up a Trailhead medium to perform either or both of these tasks.

To allow route requests to get from the Trailhead server to the Web PG

To perform routing, the Trailhead medium MUST have a CanRout e connection to the Trailhead
server. Its destination chooser must be DcICM. (See About Destination Choosers for more
information.) All routing destinations are configured on the Trailhead medium.

To initiate Basic Callback requests

In this case, the Trailhead medium must have a CanQueue connection on the Trailhead server.
The Media Blender must have an ACD medium configured as well.

If a Trailhead medium does Basic Callback but not routing, its destination chooser should be
DcNull. (See About Destination Choosers for more information.)

13

Understanding Trailhead Destinations

The Trailhead software package gathers information about a caller placing a Web-based request
and submits it to the ICM. A script set up in the ICM receives the caller data and performs all
routing logic, ensuring the call can be routed to an appropriate location. At this point, Trailhead
again takes over, receiving ICM script output and providing appropriate response to the Web
request.

ICM scripts route calls to call centers at different locations. The script returns labels, which are
simply strings that identify each call center. With Trailhead, you set up destinations that
correspond to each label. For each destination, you can specify the type of response that should be
provided to the Web request (Basic Callback or Callback and Web Collaboration, as explained
below).

Destinations are defined by the Tr ai | head. pr operti es file on the Trailhead medium,
which resides on the Media Blender server. You can set up destinations that do the following:

* Provide successful response to web callback requests
¢ Handle situations when callback is unavailable
e Handle ring, no answer, error, and default ICM terminations

Destinations that Provide Response to Web Callback Requests

Destinations can be set up to provide these types of response:

Basic Callback--With Basic Callback, the caller who placed a Web request receives a call back
from an agent. When a destination is set up to provide Basic Callback only:

1. Trailhead sends a URL that tells the caller to expect a call back.

2. Trailhead sends a message to Media Blender, requesting that it place an outbound call to the
caller.

3. The ACD routes the call to the agent

When you create destinations that provide Basic Callback, you assign them a CALLONLY
destination type. This means that requests submitted to this destination are queued internally to
the switch.

Basic Callback and Web Collaboration--In configurations that include the Cisco Collaboration
Server (CCS), Trailhead can ensure that callers participate in a Collaboration session. Web
collaboration allows callers to interact and share information with agents over the Web. The
caller and agent can share Web pages, forms, or applications using a Web browser (See the CCS
documentation for supported Web browsers).

14

When responding to a request for collaboration:

1. Trailhead serves the caller with a URL that launches a Collaboration session.
2. CCS sends a message to Media Blender, requesting that it place an outbound call to the

caller.

3. The ACD routes the call to the agent.
4. The Collaboration Server connects the caller and the agent via the Web

When you create destinations that provide Web Collaboration, you assign them a COLLAB
destination type. This means that requests submitted to this destination are queued externally, to
the Collaboration Server. See Setting Destination Type, in the Configuring Destinations section
of this guide for more information.

How Destinations Reflect Your Call Centers

Trailhead Destinations do not necessarily reflect individual call centers within your enterprise.
Instead, they reflect a type of response provided to incoming Web requests. For example,
consider a configuration that includes these two call centers:

* Boston--All agents at this call center will provide Web collaboration.
* San Jose--Some agents at this call center will provide Web collaboration. Some agents
will NOT have access to Collaboration and must always provide Basic callback only.

To accommodate this configuration, set up Trailhead destinations as follows:

This call center...

...requires this many Trailhead destinations

Boston

One destination, that provides Web Collaboration

San Jose

Two destinations. The first destination provides Web Collaboration; the other

destination should provide Basic Callback for those agents who do not have
access to Collaboration.

Destinations that Handle Situations When Response is Not

Available

You also set up destinations that correspond to ICM labels that indicate web response is not
available. For example, you can set up a noagents destination to inform the caller of the situation.
You could also set up a holiday destination, to handle situations when a call center is closed due
to a holiday.These destinations serve URLS to callers, informing them of the reason response is
unavailable. These are referred to as noncalling destinations.

15

Destinations that Handle ring, busy, error, and default ICM

Conditions
The ICM script can return special terminations rather than labels. These terminations are:

* ring

* busy

e error

* default

Although these terminations can be used to indicate that response is not available, you can also
use them to handle crank or otherwise troublesome telephone calls.

16

Call Flow Through the Cisco ICM Web Option

The following diagram illustrates how a Web call might be routed through a configuration with

Trailhead and ICM:

Vieb Request
Caller completes a form with web-
bazed textual information.

rl

Trailhead =zends the feb request to its
Destination Choozer(DeRemote). The
Destination Choozer loaks for a
connection that can route the call.

Trailhead queries the Media Blender re:
routing awailability.

edia Blender validatezthe
connection to the Web PG and
respands to Trailhead, sending a
meszage that indicates whether the
connection iz available for routing or
not.

lzthe connection
vailable for rauting™®
ez

Trailhead triesthe
next connection

Teg

fire there more
connections to
ched?

Mo »

Trailhead choozes
the System Ermrar
Destination.

Media Blender = &nds the

Tralhead choozesthe connection and sends
the RouteRequest message to Media Blender

request to its Destination
Choozer(DelCh), which
applies the input map and

zends 3 Route Request to the
ek P,

Web PG fomards the RouteRequest
meszage to ICh.

I

ICM selects 3 soript based on the

ICM ealitype derived fram the DN,
CED, and ANl fields in the Route

Web PG
Receives the Route Select andfor Route Endhdessage from
ICh and fonuards it to Media Blender

ICM Senpt can optionally modify data
fields(e.g. by pedforming database
lookups, &te.)

A nalyzes resources at the different sites

to determine the best target to which to

route the request. Returns a teminalion
or 3 fakel

Request message

Media Blender:

A Usesthe Qutput Map to map ICM fields to web-bazed fields.
B Parses the ICM =script label to extract the Destination name.
A Selects Destination from its own list.

B Sends Destination to Trailhead.

Trailhead recieves the
RouteSelect meszage
with the Destination

Tralhead Destination szenez a URL to
the Caller. Destinations can provide Web
Collaboration, Basic Callback, or
notification that callbadk i unawvailable.

|

17

About Destination Choosers

Destination choosers are dynamically loaded with the Trailhead software and determine how
Trailhead should choose a destination. Both the Trailhead server and the Trailhead medium
contain destination choosers. In ICM Web configurations, the default destination choosers rely on
the ICM script to actually determine the correct destination for the call. The default destination
choosers in the ICM Web Option environment are:

Trailhead Component |Destination Description
Chooser

Trailhead server DcRemote Sends a message to one of the configured CanRout e
connections, asking the server on the other side of this
connection to supply a destination, using its
DestChooser.

Trailhead medium DcICM Sends a RouteRequest message to the Web PG which

(on the CMB server) runs an ICM script and returns a label. The label
matches a destination, which is returned.

Trailhead medium DcNull Allows a medium to accomplish ONLY Basic Callback.

Use DcNull if the Trailhead medium should not
perform destination routing.

18

Firewall Configuration and Networking

This section provides information about the following:

* Firewall Configurations
* Networking Considerations

Firewall Configurations

Media Blender communicates with the Trailhead Server through the corporate firewall using the
Sun Microsystems Remote Method Invocation (RMI). This section describes the firewall
configurations supported in this release, as well as special setup required for optimal
performance.

The firewall between Media Blender and the Trailhead server can be set up in any of the
following four modes:

Polling over outbound socket connections from Media Blender to Trailhead
Two-way socket connection

Classic HTTP Proxy mode

Transparent HTTP mode

Polling Over Outbound Socket Connections Mode

The polling mode allows outbound socket connections from Media Blender to the Trailhead
server. Media Blender connects to the Trailhead server using TCP/IP socket connections. If you
use this mode, ensure that your firewall permits outbound socket connections from Media
Blender to Trailhead on all ports. This mode provides high throughput and is the recommended
configuration.

Note: In this mode, you must disable attempts by the Trailhead server to automatically connect to
the Trailhead medium. The Tr ai | head. ser ver. properti es file contains a property,
connect i on<n>. di sabl eaut oconnect , which you must set to true to ensure the
Trailhead server does not try to automatically connect to the Trailhead medium. This property
setting ensures that the Trailhead medium will instead poll the Trailhead server from inside the
firewall.

Two-way Socket Connection Mode

In the two-way socket connection mode, the firewall allows both of the following:

¢ Qutbound socket connections from Media Blender to Trailhead
¢ |Inbound socket connections from Trailhead to Media Blender

If you use this mode, ensure that your firewall permits inbound and outbound connections

between Media Blender and Trailhead on all ports. This mode provides the highest throughput
and the lowest delays of the four modes.

19

Note: If the firewall will allow both inbound and outbound communication, you must set the
connect i on<n>di sabl eauot oconnect property in

Trai | head. server. properti es to false. This property setting ensures that the Trailhead
server will connect to the Trailhead medium automatically, initiating two-way communication
through the connections.

Classic HTTP Proxy Mode

In the Classic HTTP proxy mode, the firewall permits outbound HTTP communication only to all
ports. Media Blender connects to the Trailhead server using HTTP to the RMI registry port (1099
default). This mode provides the lowest throughput of the four modes. Make sure the checkurls
property in the Tr ai | head. pr operti es file on the Media Blender server is always set to
false.

If you set up your firewall using this mode, you must make sure you set up the proxy parameters
on the Media Blender using ServletExec Administration and the LoadWLRoot servlet. (See the
Media Blender Installation Guide for more information.)

Transparent HTTP Mode

The firewall permits HTTP communication over all ports. There is no special set up required for
this mode.

Networking Considerations
The following are some networking considerations:

* Both the Trailhead server and the Media Blender server require static IP addresses.

* Regardless of your firewall setup, you must maintain a hosts file rather than use Domain
Name Service (DNS) to identify the IP address of your machines. Using DNS may result
in RMI connectivity problems. The hosts file resides at these locations:

* Windows NT: wi nnt\ syst enB2\ dri vers\etc\hosts
* Solaris: /etc/hosts

The hosts file on the Blender machine must have an entry for the Trailhead server; the hosts file
on the Trailhead server must have an entry for the Blender machine.

* If using Classic HTTP proxy mode, do one of the following:
* Ensure the firewall machine contains a hosts file entry or
e Specify the IP address in the Trailhead medium'’s property file on the Blender server
(Trai | head. properties.)

e Ifusing Classic HTTP proxy mode, the Trailhead server IP address must not be
accessible by any means other than what is allowed through the firewall. To verify this,
try to ping the Trailhead machine; you should receive the message "Destination host
unreachable." (Receiving a timeout message does not ensure the machine is unreachable.)

20

Trailhead Failover Using LocalDirector

The ICM Web Option system is comprised of two paths--a routing path and a CT1 path. This
section describes only the routing path. When Trailhead routes requests to the ICM Central
Controller using a routing configuration that includes the Cisco LocalDirector, the goal of the
configuration is to eliminate a single point of failure, namely Trailhead.

How LocalDirector Helps
If any of the following events occur, the system cannot route Web session requests:

* The Trailhead server goes down

e The Trailhead/Media Blender connection fails.

* The Routing Media Blender fails.

¢ The connection between the Media Blender and the Web PG fails.

With the proposed solution using redundant LocalDirectors, Web session requests coming from
the Web site, are routed to the redundant routing path, which is shown in the following figure:

Firewall 1 Virtual server Firewall 2
| Real IP |
i 161.44.248.121 : duplexed PGs
| | ey
. i N ! Web PG1A
Internet | = | [l
L ’—'b LD1 TH1 | | (MBI i
‘ 1 ! ! PIM2 i
Callers | : . virallpe | — Bl] v L —>/ b
browser | {61.44.248.248 N oM |
| | — L~ 17 /| Web PGTB | J
o : ! H N _
' ' | LD2 TH2 | | (CMB2 [F"M‘]
: kil PIM2 2
ACTOnyYms. | .]
CME Cisco Madia Blender I Real IF i
ICM Intelligent Contact Management | 161.44.248.102 ' |

LD LocalDirector

PG Paripheral Gateway

FIM Paripharal Interbcs Managar
TH Trailh=ad

Trailhead failover is accomplished using the Cisco LocalDirector. The LocalDirector offers a
high-availability, Internet scalability solution that provides load balancing and a failover
mechanism to eliminate points of failure for a server farm.

You can use a Cisco LocalDirector and the LocalDirector User Interface (LUI) software to load
balance and probe two Trailhead servers. Load balancing, performed by the LocalDirector, is the
distribution of traffic between the two servers. Probing, performed by the LUI, is the checking of
the servers at specified intervals to be sure that the Web link is active. If the LUI probe detects
that a Web link is inactive for one Trailhead server, it will direct the LD to designate that server
as "out of service" (O0S) and direct traffic to the other Trailhead server.

Any ongoing sessions on the Trailhead server might be lost, but new session requests will be
routed. The components or links that have gone down can be restored by hot swapping.

21

Limitations

Note that this configuration does not eliminate or overcome all modes of failure. Some of the
limitations of the system include:

* Failover detection is limited to detecting if the Trailhead server is reachable over the
network.

» IfaCisco Collaboration Server or a Cisco Media Blender in the CTI path of the system
(not shown above) goes down, the system might still direct requests to that server. Such
requests will, however, not be served.

Configuration for Trailhead Failover

For Trailhead failover using the LocalDirector with the ICM Web Option solution, you need a
pair of Trailhead servers. For each additional Trailhead server, you need a complementary Cisco
Media Blender and a Web PG. The figure shown previously illustrates the configuration. You
must configure the following:

Trailhead and Media Blender connections
Trailhead destinations

Duplexed Web PG

Redundant LocalDirectors

Trailhead and Media Blender Connections

Each Trailhead server is configured to connect to both CMB1 and CMB2. When a request comes
in from the LocalDirector, it goes to Trailhead (TH1). Trailhead sends the data to one CMB, not
to both. TH1 chooses the CMB that is up. If one connection is down, Trailhead uses the other.

Configure the connections for the Trailhead medium on the CMB in the

trail head. properti es file. Configure the connections for the Trailhead server in the
trail head. server. properti es file. See the section Trailhead Components and
Connections for additional details.

Inthe Tr ai | head. server. properti es file on the Trailhead server, set the value for the
For mJRL property to the virtual IP address for the callback form (cal | f or m ht m). The
callback form itself should be on a server other than the Trailhead server as explained in the
following section. For information about the virtual IP address, see Creating a Virtual Server.

Trailhead Destinations

To ensure that the destination URLS are accessible by a Trailhead server in the event that one
Trailhead server goes down, you must move the HTML forms in the URLS to a new directory on
the Cisco Collaboration Server (CCS) or some other Web server. You must also configure two
property files. This is a two-step process:

1. Create a new directory and move the destination forms from the Trailhead server to this

directory.
2. Configure two property files to point to the new directory.

22

Step 1: Create Directory and Move Forms

From the following directory location on the Cisco Collaboration Server:

C.\ <CCs di r>\ pub\ ht m \ For ns\

createa\ t r ai | head subdirectory:
C.\<CCs dir>\pub\htm \ Forns\trail head

and move all the destination forms to this new subdirectory from the following Trailhead server
directory:

C:\C scoTH pub\ ht M \ Fornms\trai | head
Step 2: Configure the Property Files

In both the Tr ai | head. pr operti es file on the Media Blender server and the

Trai | head. server. properti es file on the Trailhead server you fill find a

desti nati on<n>. URL property. Change the value of this property in both of the files so that
they point to the new Trailhead directory you have just created:

desti nati on<n>. URL=htt p: // <CCS- HOST- NAME>/ <CCS
dir>html/Forns/trail head/ <fil ename>. ht m

Note: Although the above example uses the Cisco Collaboration Server, you can move the forms
to a directory on any Web server and then have the dest i nat i on<n>. URL property point to
that location.

Duplexed Web PG

The ICM Web Peripheral Gateway (PG) connects to the Media Blender. To help keep things
running, set up a duplexed Web PG using two Web PGs with VVoice Response Unit Peripheral
Interface Managers (VRU PIMs), as shown in the previous figure.

The duplexed Web PG operates as one PG with two sides--Side A and Side B. If one Web PG
goes down, the other side becomes active. The shadow PIM picks it up. For information on how
to install and configure duplexed PGs, see Chapters 2 and 7 of the ICR Installation Guide. For
more information on fault tolerance using the ICM software, see Chapter 2 of the ICR
Administrator Guide.

Redundant LocalDirectors

For full redundancy, you need two Cisco LocalDirectors. The two LocalDirectors can be
configured to back each other up, so that when one unit fails, the other takes over for it. However,
they are only one component of a fault tolerant Web application system. See the White Paper:
Failover Configuration for LocalDirector for details on how to set up a primary and a secondary
LocalDirector.

When you have both a primary and a secondary LocalDirector, there is still only one virtual
server and one virtual IP address. If one LocalDirector goes down, the other one assumes all of its
configurations.

23

Setting up the LocalDirector

You can configure the LocalDirector directly from the command-line interface or by using the
LocalDirector User Interface application. The LUI is necessary for configuring probes. After you
have configured the LocalDirector, the fact that there is more than one Trailhead server is
invisible to the caller, because the LocalDirector presents a "virtual” server to the caller, and the
requests to the virtual server are directed to the "real” Trailhead servers. Each Trailhead server
and the virtual server have IP addresses that are added into the LocalDirector configuration file (a
command script). See the Sample Configuration File.

This section provides information about the following:

* Installing LocalDirector

e Creating a Virtual Server
* Creating a Probe

e Sample Configuration File

Installing LocalDirector

Before you can configure the LocalDirector using the LUI application, you must do the
following:

1. Install the LocalDirector User Interface application on your Windows NT or Solaris
workstation.

2. Connect the enclosed null modem serial cable to the console port of the LocalDirector and the
other end of the cable into your ASCII terminal or the serial port of your PC (running a
terminal emulation program). Directly connecting to the LocalDirector is necessary so you
can initially configure the IP address of the LocalDirector.

For details on how to install and use the LUI and the LocalDirector, see the LocalDirector User
Interface Install and User Guide and the LocalDirector Installation and Configuration Guide.

Creating a Virtual Server

A virtual server presents a single IP address that represents two or more real servers. The virtual
IP address is published to the user community, but the real Trailhead server IP addresses can
remain unpublished, allowing you to hide actual site implementation details and provide a single
point of contact for users. The virtual server address can be accessed only from the client side of
LocalDirector. Also clients and the real servers bound to the LocalDirector virtual server cannot
be located on the same side of LocalDirector.

Inthe Tr ai | head. server. properti es file on the Trailhead server, set the value for the
For mJRL property to the virtual IP address for the callback form (cal | f orm ht m).

Using the LocalDirector User Interface application, you must first create a virtual server and then
create the real servers. Basically, you add the Name, IP address, Port, and bind ID using the
Create Virtual Server window and the Create Real Server window.

See the Adding Virtual Servers and Adding Real Servers to Virtual Servers sections of the
LocalDirector User Interface Install and User Guide.

24

Creating the Probe

In the Tree View of the LocalDirector User Interface Window, you will see a probes directory
under the virtual server directory. Select Probes and click the Create New Web Probe icon. On
the Create New Web Probe window, enter the following information into the appropriate fields:

e A statement that describes the purpose of the probe, such as "Test TH link."

* The URL for the link you want to test; for example, htt p: // 161. 44. 248. 121/

* The interval of time between probes; for example, 30 minutes if you want LocalDirector
to check the link every 30 minutes.

See Setting Up Probes in the LocalDirector User Interface Install and User Guide for more
details.

For information on setting up the LocalDirector to do load balancing, see the LocalDirector
Installation and Configuration Guide.

25

Sample LocalDirector Configuration File

By entering information into the LocalDirector User Interface application using directed mode,
the following configuration file was created. The bold text near the end of the file shows the
virtual, real, and bind IP address information. Each bind command binds a real Trailhead server
to the virtual server. The caller's request goes first to the virtual server and then to the Trailhead
server listed first in the file (first real IP address). Subsequent connections to the virtual server
are load balanced based on a user-selectable predictor algorithm. The default predictor algorithm
is "leastconns" (least number of connections). Note that the first IP address listed in the following
file is that of the LocalDirector.

Local Director 430 Version 3.3.2
sysl og out put 20.3
no sysl og consol e
enabl e password 000000000000000000000000000000 encrypted
host nane | ocal dir
no shutdown ethernet 0
no shutdown ethernet 1
shut down et hernet 2
no shutdown ethernet 3
interface ethernet 0 auto
interface ethernet 1 auto
interface ethernet 2 auto
interface ethernet 3 auto
ntu 0 1500
ntu 1 1500
ntu 2 1500
ntu 3 1500
multiring al
no secure
no secure
no secure
no secure
pi ng-al l ow 0
pi ng-al l ow 1
pi ng-al | ow 2
pi ng-al | ow 3
i p address 161. 44. 248. 250 255. 255. 252. 0
route 0.0.0.0 0.0.0.0 161.44.248.1 1
no rip passive
rip version 1
failover ip address 0.0.0.0
no fail over
failover hellotime 30
password ci sco
tel net 161.44.251. 121 255. 255.252.0
tel net 161.44.240.120 255. 255.255.0
snnp-server enabl e traps
snnp-server comunity public
no snnp-server contact
no snmp-server |ocation
virtual 161.44.248.248:0:0:tcp is
real 161.44.248.121:0:0:tcp is
real 161.44.248.102:0:0:tcp is
bi nd 161. 44.248.248: 0: 0:tcp 161.44.248.121:0:0:tcp
bi nd 161. 44.248.248: 0:0:tcp 161.44.248.102:0:0:tcp
| ocal dir(config)#

wWNPHFO

26

Understanding ICM input and output

Trailhead provides information to the Intelligent Contact Management (ICM) Central Controller,
which then handles routing of the request to the appropriate call center. ICM reads information
about each incoming call, determines the best destination for the call, and sends the call to an
appropriate destination. Trailhead then receives information from the ICM script after the request
has been routed.

This section discusses these topics:

e ICM Input: The Web request
* The Route Request message to the Web PG

ICM Input: The Web request

The data Trailhead submits to ICM comes from the Web request, submitted by the caller. Callers
place requests using the Web by filling out a callback form served by Trailhead. The callback
form is an HTML form used to gather information about the caller. We provide a sample callback
form, cal | f or m ht m , which appears below:

Webh Callback

® Name: I
Fhone Humber: I

| wiish ta cnntactlSﬂlES j

- I_ by internet connection is separate from my phone. I'd like to be able to share web pages.

® Contact mein al:u:-utl minutes.

Contact Me |

This form gathers information about the caller. Your enterprise can alter the HTML that
comprises this page to gather information pertinent to your business.

Some of the data passed in the Web request is entered by the caller; the Web request also captures
less visible data, such as information about the Web browsers used in each session. The variables
used to store all Web request values appear in the table below:

27

Visible fields

The fields on this form are described as follows:

Field name Field name in Description
HTML source

Name Name The caller's name. Trailhead retrieves the name
entered here and inserts it into the forms served
back to the caller

Phone number PhoneNunber The caller's telephone number. Trailhead retrieves
the number entered here and inserts it into the
HTML forms served back to the caller.

I wish to contact... Rout e The routing code to which this call should be

routed. You can format this as a drop-down box,
allowing the caller to choose from a list of skills or
geographic locations. Or, you can create several
callback forms, one for every agent group, with the
appropriate routing code hard-coded into a Route
field.

My internet connection
is separate from my
phone. I'd like to be
able to share Web
pages...

Want sCol | ab

This flag determines whether the request is routed
to a CALLONLY or a COLLAB destination. If the
Collaboration flag is checked, the request is routed
to a Collaboration destination.

Note: The ICM script MUST evaluate the value in
this field to route the request correctly. See
Understanding the ICM script in this guide for
more information.

Contact me in about
...minutes

Cal | BackDel ay

This field lets the caller specify a delayed callback.
The caller can enter how long the call center
should wait to call back, beginning when the
request was submitted. The caller enters this time
in minutes (numeric values only). The time entered
should not exceed 120 minutes.

Hidden fields

The following table describes the hidden HTML fields included in cal | f or m ht m that you
can pass to the ICM software.

Field Description

Trail head If set to 1, this field identifies this as a Trailhead form.

Request Fr omJRL This field identifies the page from which the Web request was made.
User 1- User 4 You can define these fields to provide information about the caller to

ICM, Collaboration Server, or Media Blender. See the Media Blender
Configuration Handbook for more information on defining these fields.

28

Customizing your form

The tables above show the fields that are included in the sample callform provided with
Trailhead. You can customize the HTML source to add any other fields your site may require or
to remove fields that are unimportant to your organization.

The Route Request Message to the Web PG

Trailhead sends a Route Request message to the Web PG, which, in turn sends the Route Request
message to the ICM Central Controller. Using the Route Request message, the Web PG (the
routing client) asks the ICM for a destination for the call.

The Route Request message sent to the Web PG can contain the following ICM variables. (Each
of the 10 Call Variables listed below can have up to 40 characters.)

Variable
DN

AN

CED
CALLVARL
CALLVAR2
CALLVAR3
CALLVAR4
CALLVARS
CALLVARG
CALLVAR7
CALLVARS
CALLVAR9
CALLVAR10

Description

Dialed Number
Automatic Number Identification
Caller Entered Digits
User-defined string
User-defined string
User-defined string
User-defined string
User-defined string
User-defined string
User-defined string
User-defined string
User-defined string
User-defined string

29

Mapping ICM and Web Data

You can ensure that information from the Web is passed to the ICM and to the ECTI server. You
can also ensure that ICM information is passed back to the Web database. This section includes
these topics:

* Mapping Web data to ICM variables
e Mapping ICM variables to Web variables
* Passing data to the Cisco ECTI server

Mapping Web Data to Route Request Variables

You populate the Route Request message with information gathered in the Web request using a
text file called the input map. Trailhead's Input map (i n. map. properti es) is a text file that
maps fields found on the Trailhead callback form with ICM fields. The format of each entry is as
follows:

<| CM vari abl e> = <Wb vari abl e>

For instance, the file might contain this entry:

CED=Rout e

This entry specifies that the value in the Route field on the web request should be passed in the
CED (Caller Entered Digits) variable in the Route Request message. In this way, the Input Map
translates the information from the incoming web request and populates a route request message
submitted to ICM.

Note that you can set the ICM variable to a literal string rather than a Web variable. For instance,
consider the following example entry:

DN="1000"
This line ensures that 1000 is always passed in the DN field.

Important: Mapping DN to a literal string ensures that the same script is run for all web calls.
See How the ICM script is selected for alternative methods for selecting scripts.
A sample input map appears in the Configuration File Reference section of this guide.

Using ICM Call Variable 10 (Lucent switches only)

When using the predictive call strategy with a Lucent switch, Media Blender makes internal use
of Call variable 10. If you need to be able to use call variable 10 in your application, you can free
up variable 10 by setting the calltag property in ACD. ci scocti . properti es to another
ICM call variable. See the Media Blender Reference Guide for a description of this and all ECTI
properties.

30

Mapping ICM Variables to Web Variables

ICM also passes caller data through each label to the Web PG. The Web PG then sends a Route
Select message to Trailhead. You use a text file called an output map

(out . map. properti es)to map ICM values received in the Route Select message to web-
based values that can repopulate the web request. The output map is optional.

The format of each entry in the file is as follows:

<| CM vari abl e> = <\Wb vari abl e>

Using the Output Map to Enhance ICM/Collaboration Reporting

The output map is particularly important if you want to be able to identify Web calls in your
Collaboration reports. You can write an ICM script to associate a unique identifier, such as the
ICM Router Call Key, with each Web call. You can then use the output map to place the
identifier in one of the Collaboration call variables.

For instance, if you placed the ICM call identifier in ICM Call variable 6, an entry in your output
map might be:

Cal | Var 6=User 1

This entry specifies that the value in the call variable 6 field on the ICM system should be placed
in to Userl field in the Collaboration Server data base. The value in the User 1 field is displayed
in the Collaboration Adminsitration Request report (see Reporting on Web calls and
Understanding the ICM Script in this guide for more information.)

See The Web Request in this guide for a complete list of Web callform variables.
A sample output map appears in the Configuration File Reference section of this guide.

Note: You can also pass any of the Web fields to the Cisco ECTI server. See Passing data to the
Cisco ECTI server for more information.

31

Passing Data to the ECTI Server and Back to the Web

You have the option of loading callback form data, as well as data obtained by the ICM script,
into Cisco ECTI server call variables. The ECTI server can then use these values in a variety of
CTI applications, such as agent screen pops.

You can map any information from any of the variables on the callback form, as well information
stored in the 10 ICM call variables to any of the 10 variables on the CTI server. The 10 ICM call
variables can contain up to 40 characters each.

Important: This release of Trailhead does not support the mapping of ICM expanded call
variables to Web variables.

(For more information, see these sections of this guide: ICM input--the Web request and The
Route Request message to the Web PG.)

To use this feature, you must set up a text file called an input map between the CTI server and the
Web callback form. This file is called cti . i n. map. properti es and resides in the
Ci scoMB/ servl et/ properti es directory. The format of each entry is as follows:

<ICM vari abl e> = <Wb vari abl e>
For instance, the file might contain this entry:
CALLVAR2=user 1

This entry would ensure that the value in the User1l field on the callback form is passed into Call
Variable 2 on the CT]1 server.

Note that you can set the CTI server variable to a literal string rather than a Web variable. For
instance, consider the following example entry:

CALLVAR1="Web Cal I "
This line ensures that the words "Web Call" are passed to call variable 1.

A sample ECTI peripheral input map appears in the Configuration File Reference section of this
guide.

Note: You must identify the peripheral input map in your ACD. ci scoct i . properti es file,
using the peripheral.inmap property. See the Media Blender Reference Guide for more
information.

You can use the output map to then map any of the values stored in the ICM variables back to the
Web database.

32

Sample files

We provide several sample files you can use to ensure Web and ICM data is passed to the ECTI
server. These three samples reside in the G scoMB/ ser vl et/ properti es directory and
are designed to be used together. Specifically:

cal l vars-cti.in. map. properties

This sample file maps Web call variables 1-10 ito the CTI call variables 1-10 (in the phantom
callback to reserve the agent and Web callback, if there is one.)

cal | var-out. map. properties

This sample file maps the CT1 call variables 1 - 10 into the Web variables (from the Web request
call).

cal | vars-sanj osel. htm

This sample file is an HTML form that launches a Web Collaboration session. It substitutes in the
CTI Call Variables 1-10 (from the Web request into the Web session in Collaboration in
Blender.)

33

ICM Script Considerations

This section contains information about ICM script considerations.

How the ICM Script is Selected

ICM scripts are selected by the incoming ICM call type. ICM call types refer to different
categories of calls; for instance a call type might be set up for Sales; another might be set up for
Service. When a call comes in for Service, ICM selects and runs the appropriate script.

The call type for Web calls is determined by the Dialed Number (DN) field either by itself or with
any combination of the Automatic Number Identification (ANI), and the Caller Entered Digits
(CED) fields in the incoming Route Request Message.

In your input map, ensure the following Web variables are passed to these ICM variables:

ICM Variable Web Variable

DN "<script number>" or Route (see section below).
ANI PHONENUMBER

CED NAME

Using a Variable or Literal in the Dialed Number Field

You can set the DN field to a literal string by enclosing the script number within quotation marks.
For instance, you can ensure that 1000 is always passed in the DN field by including the entry
DN="1000" in your input map.

If you choose to map DN to a literal string, and if it is the only Route Request variable used to
select the script, be aware that you will be able to run only one script for your Web requests--the
script mapped to the literal passed in the DN field. If you also use the ANI and CED variables
when setting up the Web call type, however, you can run multiple scripts.

If, however, you choose not to use a literal string, you can set the DN to equal the value in the
Route field on the Web callback form. You can then maintain several scripts to route Web
requests, based on whatever value is entered in the Route field on the callback form. Keep in
mind, however, that setting the DN to a Web variable means that whatever is entered in the Route
field will be mapped to the DN on the ICM Web PG. If a Web user tampers with call form data,
in particular with the Route value, an unexpected value may be returned and mapped to the DN
field. It is therefore possible that a Web-routing script may be selected that is different from the
script you intended.

34

Understanding the ICM Script

The ICM script performs all tasks associated with ensuring the web request is routed to the
correct peripheral target. The script can perform real-time analysis of available resources at each
location in your configuration and make decisions on routing the requests based on that analysis.

ICM Script Tasks

When routing Web requests, the ICM script must perform these tasks:

* Evaluate available resources at each call center in your configuration.

* Determine whether the request should receive Web Collaboration or Basic Callback.

* Associate the call with a unique ICM identifier (for Collaboration reporting purposes--
optional).

* Return labels that correspond to Trailhead destinations.

Evaluate Available Resources

ICM selects a resource based on a number of factors. For instance, a script might query all
resources to determine the location of the agent who has been available the longest. Another
factor ICM can use to route calls is the Minimum Expected Delay (MED). With MED, ICM
queries selects the resource that expects the shortest wait for the call.

Choose between Collaboration and Basic Callback

The script can also evaluate values passed to the script from the Web request. For instance, the
script might evaluate the value passed in the ANI field to determine the best skill group to which
to route the call.

The route request also contains a flag that determines whether a Collaboration session or Basic
Callback has been requested. This value is entered in the wantscollab field on the Web callback
page. (A value of on indicates Collaboration; off indicates Basic Callback.) We suggest this value
be mapped (using the input map) to one of the ICM call variables (CALLVAR?2).

The script must evaluate the value in this field to determine proper routing of the Web request.
Trailhead destinations are set up to provide either Web Collaboration OR Basic Callback.
Therefore, the script must examine the value in the wantscollab field to ensure the request is
routed to the correct destination.

Associate a Unique ICM Identifier with the Web request (optional)

This optional step ensures that Web calls routed through the ICM can be identified in
Collaboration reports. Using a Set node, you can use the RouterCallDay and RouterCallKey
variables to assign a unique identifier to one of the ICM call variables. You can then use your
output map to map the identifier to Collaboration call variable 1 (Userl). You can then identify
Web calls that were routed through the ICM by locating the identifier in Collaboration reporting.

Return Labels that Correspond to Trailhead Destinations

ICM scripts return labels that indicate the peripheral target to which the call is routed. Labels are
strings that are interpreted by the Web PG and point to particular locations and routing addresses
within the configuration. (A routing address typically corresponds to a skill group.)

35

The Trailhead administrator sets up Trailhead destinations that correspond to each label output by
an ICM script. Trailhead destinations simply indicate the method your site will use to respond the
Web request. For instance, one Trailhead destination might provide Web Collaboration; another
might provide Basic Callback only. Another destination might serve the caller a URL that
indicates the call center is down. (See the Configuring destinations of this guide for more
information on Trailhead destinations.)

Because Trailhead destinations indicate a type of response to a request, you will likely have more
Trailhead destinations than actual call centers.

Your ICM script, therefore, must return labels that correspond to each Trailhead destination.

36

Example

Below is a sample script that might be used to route Web calls to two different types of agents.

This et node uses two IO variahbles,
RouterZaliDay and RowterZallKey, to create a
unigue identifier for the call and places them in

TSN CallarS. This identifier can be mapped
wvig the output map to a Collaboration call
vatable. The call can then be identified in

Collaboration reporting.

= Sat

5
3
5
3
3

‘@ Service :

_I;Tservice No. %

ACD_PG_1.5ales5ve.5001

Selact

@. Service :

~ »iService No. | %
ACD_PG_1 RefundSve 5002 |

aaaaaaaaaaaaaa

The schipt checls the value passed in the disled
number field to determing whether the callls a
sales call or & suppart call regarding refunds. [t
then selacts the longest avallable agent in the
approprate growp. The scrpt returns & label that
matches a Tralthead destination.

o
¥: Announcement|

If no agents are avallable for the request, the script
returns an AgentsBusy announcerment label that
matches a noncalling Trailhead destination. An
approptiate URL will be served to the caller.

For more information on creating scripts, see the ICR System Manager Guide.

37

ICM Script Label Configuration

When Trailhead receives the label from the ICM, it extracts the destination name and the routing
address that should be used for the call from the label name. In most cases, script labels should
follow this format:

<destinati on nanme><del i mter><routing address>
where

* <destinati on name> indicates the location of the call center to which the request is
routed.

Important: The destination name portion of each label must match the names of your Trailhead
destinations. See the Defining and naming destinations section of this guide for more information.

* <del i m ter>isany character used to separate the two portions of the label. You can
define the delimiter to any character of your choice. (We suggest using a hypen.) See the
Configuring destinations section of this guide for more information. (Note that you can
choose not to use a delimiter, but rather a length-based parsing method for passing this
information in the ICM label. See Reserving a number of characters for the destination
name, below for more information.)

* <routing address>isthe numeric identifier used by the ACD to determine how to
queue the call. For example, in the Lucent Definity, this is the vector directory number
(VDN).

For example, the label Boston1-12345 indicates that the call should be routed to the Bostonl
location, and to VDN 12345.

For more information on ICM scripting logic, see the ICR System Manager Guide.

Reserving a number of characters for the destination name

You can choose not to use a delimiter in your label names, you can configure Trailhead to
interpret the first n characters in a label name as the destination name. The ICMLabelLength
property in the Trailhead properties file lets you specify how many characters reflect the
destination name.

For instance, in the properties file for the Trailhead servlet, you might specify the
ICMLabelLength property as 8. If the Label name is SanJose112345, Trailhead will interpret the
first 8 characters as the destination name, or SanJosel. The routing address, therefore, is the
remainder of the label name, or 12345.

If you choose this method, make sure your ICM Script labels follow the convention specified in
the IcmLabelLength property in Tr ai | head. G scoVRU. properti es.

38

ICM Scripting Tip

Using the Trailhead medium on the Media Blender server, you can configure a CallOnly
destination and a Collaborative destination that point to the same peripheral target. This requires
that you:

1. Edit the in.map.properties file on the Media Blender Server
2. Configure the ICM
3. Set up the ICM routing script

Edit in.map.properties on the Media Blender Server

Editthe i n. map. pr operti es file on the Media Blender server and set the ICM Call Variable
2 to the Web WantsCollab field. For example, the file should contain this line:
Cal | Var 2=Want sCol | ab

Configure the ICM

Create two labels with the same peripheral target; for example, sitel collab-6000 and
sitel_callonly-6000.

Set up the ICM routing script

This routing script example has two rules, one which maps to Service.Sales for a call-only
session, and the other which maps to Service.Sales for a collaborative session. Using the
following method, the same label is returned every time; that is, the first rule returns the
sitel_collab-6000 label, and the second rule returns the sitel_callonly-6000 label.
Complete the following steps:

1. Inthe lower left corner of the Routes tab on the ICM Route Select Properties dialog box,
select the "Allow connection for each target" checkbox.
2. Add the following formula in the "Consider If" section for the Collaborative destination:
Servi ce. Sal es. Agent sLoggedOn > 0 && Cal | . Peri pheral Var2 = =
"on"
This assumes that CallVar2 contains the contents of the Wants Collab form element
mapped through the in.map.properties file.
3. Add the following formula in the "Consider If" section for the CallOnly destination:
Servi ce. Sal es. Agent sLoggedOn > 0 && Cal | . Peri pheral Var2 ! =
"on"
4. Create Label nodes for each Route Select connection and attach them. You can directly
specify the returned label in each of these Label nodes.

Note: You can also use node connections after each route selection rule to set a call variable that
should be returned in out . map. pr operti es for that route selection. For example, a CMB
call type could be set if the destined CMB was configured with multiple call strategies.

See the ICM documentation for additional information on scripting.

39

Reporting on Web Calls

Full reporting on Web requests routed through the ICM is not yet available. You can, however,
track ICM-routed Web requests through Collaboration reporting. You do so by associating an
ICM identifier with each Web call routed through the ICM.

To associate an ICM identifier with each Web call:

1. Inthe script that routes Web calls, include a Set node that uses the RouterCallDay and
RouterCallKey variables to assign a unique ICM identifier to an ICM call variable
associated with the request.

2. Inthe output map, map this ICM call variable to Collaboration call variable 1 (Userl).

To generate a report that shows the call key:
1. In Collaboration Administration, select Reports > Requests.

The Reports: Requests screen appears.

2. For Request type, choose Extension. Specify any other criteria as desired and click run
report.

The Reports: Requests: results screen appears. The ICM identifier will appear in the
ApplStrl column of the report.

40

Configuring Destinations

This section describes the different kinds of Trailhead destinations you may set up to handle
different Web requests. It includes these sections:

Defining and naming destinations

Setting a destination's type

About Callonly destinations

Determine which URL should be served by each destination
Example 1: Setting up a Basic Callback destination
Example 2: Setting up a destination for Web Collaboration
Example 3: Setting up a non-calling destination
Destinations for other script terminations

Defining and Naming Destinations

You define parameters for all destinations that can route calls using one file,
Tr ai | head. properti es, which resides in the
\ G scoMB\ ser vl et\ properties\bl ender directory on the Media Blender server.

Begin by numbering and naming each destination using the Destination<n>.Name property. For
instance, these properties define two destinations:

Desti nati onl. Nanme=
Desti nati on2. Nanme=

(Al properties that pertain to each destination are prefixed by the Destination<n>. prefix.)

Keep in mind that, even though the destinations are numbered sequentially, you can delete a
destination within the sequence without having to renumber your remaining destinations. For
example, if you originally configure destinations 1-5, and then delete destination 3, you need not
renumber destinations 4 and 5; Trailhead automatically accounts for the missing number.

Important: ICM labels that indicate destinations for Web requests are comprised of both the
location name and the routing address that should be used for the call. Your destination names
MUST match exactly the first portion of the ICM label associated with the destination. For
example if the ICM script returns the label Boston1-12345, the Trailhead destination name should
be Bostonl. See Configuring Script Labels in this guide for more information.

The Trailhead medium on the Media Blender should have a full list of destinations, matching
every label that can be returned by the ICM script.

The Trailhead server, since it is using a DcRemote destination chooser, gets its destinations from
the Media Blender. Therefore, it needs only one destination, for SystemError.

41

Setting a Destination Type

In the Trailhead properties file you define the destination's type. The type of a destination
determines what kind of response will be given to Web requests that are routed to the destination.
Use the Destination<n>.Type property to establish the destination's type. Acceptable values are:

Destination Type Description

CALLONLY Basic Callback. This destination type queues the Web request internally, to
the switch.
COLLAB Web Collaboration. This destination type queues the web request to an

external system (e.g. the Collaboration Server).

NOCALL Non-calling. This destination type does not provide callback or collaboration
to the caller, but instead serves a URL that informs the caller that response is
unavailable. Use this type of destination when callback is unavailable or to
handle crank or troublesome calls.

About Callonly Destinations

Callonly destinations are destinations that provide basic callback only to Web requests. Requests
for basic callback are queued to an ACD using connections that have been configured as
CanQueue. (See Connection Types in this guide for more information.

Destinations are defined for the Trailhead medium, in Tr ai | head. pr operti es on the Media
Blender server. For callonly destinations, you must establish the following four values:

Property in Trailhead.properties Description

desti nati on<n>. name= The destination's name. Remember that the ICM script
must return a label that begins with this name to ensure
requests are submitted to the correct destination.

desti nati on<n>.type= The destination’s type, which should be callonly.
desti nation<n>. URL= The URL that should be served to the caller by this
destination.

desti nati on<n>. queueconn= The connection through which the request should be
queued. This property should be set to the local server
name of the Trailhead server that will queue the call.
This property is explained further in the following
section.

42

Understanding the dest i nat i on<n>. queueconn Property

The dest i nati on<n>. queueconn property identifies the Trailhead connection this
destination should used to queue basic callback requests. Each end of an RMI connection is

defined using connect i on<n>. | ocal ser ver namne and
connecti on<n>. r enot eser ver namne properties. These properties identify both the

"Trailhead end" and the "Media Blender end" of the connection.

In the dest i nat i on<n>. queueconn property, enter the value in the | ocal ser ver nane
property of the "Trailhead end" of the connection. This value identifies the actual Media Blender

that will queue the call to the ACD.

Consider the following diagram:

-]

b

&

o

=

[}

"

T

L

L

" =
Cizco E
Collabaoration &
Server a

Firewall

Trailhead server

Connection 1 CanQuene and CanRoute to

Media Blender 1
localzervernames= trailhead
remaoteservarname= blender

Connection 2 CanQueneto Media Blender 2

localzervernames=traihead
remoteservernamea=hlendsr2

CCS

[Medium T[]

CTH Medium

Destinations

Connection 1 to Trailhead server.
localzervername= blender
remateservername= trailhasad

deszt! name=hostoncollzh
dest1 type=colab

dest? name=hostoncallanly

dest2 type=callanly
dest? quenscann=hlendet

destd name=zesttle

dests type=callonly
desta queuscaonn=hlender2

CTI
[hledium []

CTH Medium

Connection 1 to Trailhead server.

localservernames= blender?
remaoteservername= trailheaad

CTI

| tediom |]

Cisco Media Blender 2

Cisco Media Blender 1

43

This diagram illustrates a Trailhead/Media Blender configuration set up to provide both Web
collaboration and Basic callback. Media Blender 1 provides Web Collaboration and Basic
Callback. Media Blender 2 provides Basic Callback only. Because Connection 1 on the Trailhead
server is the only CanRoute connection, all destinations must be defined on Media Blender 1.
Both Connection 1 and 2 are CanQueue connections; both connections can provide Basic
Callback.

The configuration contains two callonly destinations: destination 2 (bostoncallonly) and
destination 3 (seattle). When setting up the bostoncallonly destination, you must specify the
"Trailhead-end" of the connection that will be used to queue callonly requests. Connection 1 on
the Trailhead server will be used to queue callback requests for bostoncallonly. Therefore, the
dest2.queueconn= property should be set to blender1l.

When setting up the seattle destination, you must specify the "Media Blender end" of the
connection that will queue calls routed to it. Connection 2 on the Trailhead server will be used to
queue callback requests for seattle. Therefore, the dest 3. qgueueconn= property should be set
to blender2.

44

Determining the URL to be Served by Each Destination

Inthe Trai | head. properti es file, you map each destination to a URL that should be
served to callers when requests are received. Use the Dest i nat i on<n>. URL property to
specify appropriate URLS.

The following example sets the URL for a COLLAB (Collaboration) destination:
Destinationl. URL=http://<servername>/ success_v30. htn

We provide sample URLSs you can use and modify for your configurations. See Maintaining
HTML Pages and Forms in this guide for more information.

Note for NOCALL destinations: NOCALL destinations can serve a URL, or, instead, serve
only an HTTP error code and reason to the caller. If you choose to server an error code rather

than a URL, used the destination<n>errorcode and destination<n>errorreason properties. See

Configuration File Reference in this guide for information on these properties for both the
Trailhead server and the Trailhead medium.

45

Example 1: Setting up a Basic Callback Destination

Use this procedure for all of your destinations that will provide Basic Callback only.
Inthe Trai | head. properti es filedo the following:

46

1. List each Destination using the Dest i nat i on<n>. Nane property:

Desti nati onl. Nanme=Bost onl
Define the Destination type. Use CALLONLY for Basic Callback.
Destinati onl. Type=CALLONLY

Enter the URL that should be served for this destination using the
Desti nat i on<n>. URL property:

Destinationl. URL=http://<trail head- host - name>
/ G scoTH pub/ ht m / f or ns/ bl ender/ bost onl. ht m

Define a connection to which this call should be queued:

Desti nati onl. QueueConn=<| ocal servernane of connection to
use>

Important: This connection name should be the name listed in the | ocal ser ver nane
property on the Trailhead server, the machine that ultimately processes the destination.

Example 2: Setting up a Destination for Web Collaboration

Use this procedure for all of your destinations that will provide Web Collaboration.
Inthe Trai | head. properti es file:

1. List each destination using the Destination<n>.Name= property:
Desti nati on2. Nane=San Jose

2. Define the destination type. Use COLLAB for Web Collaboration.
Destinati on2. Type=COLLAB

3. Enter the URL that should be served for each destination using the Destination<n>URL
property.

Desti nati on<2>. URL=http://<Trail head server>
/ Ci scoTH pub/ ht m / f or ns/ bl ender/ success_v30. ht ni

Note: If you are using the Cisco LocalDirector, the URL should point to the server where
you have moved the forms.

47

Example 3: Setting up a Noncalling Destination

You can use noncalling destinations to respond when no agents are available or to handle crank or
troublesome calls.

In the property file for the destination, do the following:
1. Define the destination using the Dest i nat i on<n>. Name= property:
Desti nati on3. Nane=noagent s

2. Define the destination type using the Dest i nat i on<n>. Type property. Use
NOCALL for unavailable.

Desti nati on3. Type=NOCALL

3. Enter the URL that should be served for each destination using the Destination<n>.URL
property.

Destination3. URL=http://<Trail head server>
/ G scoTH pub/ ht m / For ns/ bl ender/ noagent s. ht m

Note: Your site might use busy, ring, and error terminations to indicate down situations. See
Destinations for other ICM script terminations in this guide for more information.

48

Destinations for Other Script Terminations

In most cases, the ICM script returns labels configured to indicate busy, after hours, and error
situations. Such destinations correspond to labels set up in the ICM script.

However, your enterprise might configure a script to return ring or busy terminations in the ICM
script instead of creating separate labels for these situations. Ring, busy, and error terminations
differ from labels in that they do not direct the web request to a specific destination. In addition,
ICM sometimes returns a default termination if it cannot find an appropriate label for the request.
Should your ICM script be set up to return ring, busy, error, and default terminations, you must
set up destinations that correspond to these terminations. For instance, you should set up a system
busy destination and a system noagents destination to provide response to callers when the script
returns these labels. Replace <TRAI LHEAD- HOST- NAME> with the real name in the following
properties in the Tr ai | head. properties file:

Desti nati on9. Name=SysBusy

Desti nati on9. Type=NOCALL

URL of the page - replace <TRAI LHEAD- HOST- NAME> wi t h real nanme
Desti nati on9. URL=htt p: // <TRAI LHEAD- HOST- NAME>

[Ci scoTH pub/ ht m / For ns/ bl ender/ sysbusy. htm

Desti nati on9. Substitut e=fal se

Desti nati on9. Syst enBusy=true

Desti nati onl0. Name=sysnoagent s

Desti nati on10. Type=NOCALL

URL of the page - replace <TRAI LHEAD- HOST- NAME> with real nane
Desti nationl0. URL=htt p: // <TRAI LHEAD- HOST- NAME>

/ Ci scoTH pub/ ht M / For ms/ bl ender/ sysnoagent s. ht ni

Destinati onl0. Substitute=true

Desti nati onl0. Syst enNoAgent s=true

Destinati onll. Name=SysErr or

Destinati onll. Type=NOCALL

URL of the page - replace <TRAI LHEAD- HOST- NAME> with real nane
Destinationll. URL=htt p:// <TRAI LHEAD- HOST- NAME>

/ G scoTH pub/ ht m / For ns/ bl ender/ syserror. htni

#Dest i nati onll. Err or Code=500

#Desti nati onll. Error Reason=System Error - please try later
Destinationll. SystenError=true

Additional properties are included in the file for holidays and after hours terminations.

Note: For DcICM, the destination names must match the ICM labels.

49

Configuration File Reference

This section describes all of the properties you can use in all of the configuration files used for
Trailhead. It includes these files:

On the Trailhead Server: trailhead.server.properties

On the Media Blender server: the Trailhead medium (trailhead.properties)
On the Media Blender server: the Input map

On the Media Blender server: the Output map

On the Media Blender server: the Peripheral Input map

Note: This section documents all properties you can use to configure behavior within these files.
Be aware that not all properties shown here will appear in your property files when you install the
software.

On the Trailhead Server: Trailhead.server.properties

You define the destinations used within your enterprise using the
Trai | head. server. properti es file, which resides on the Trailhead machine in
\ G scoTH\ servl et\ properties\.

Note: Some properties require the URL of a Web page that should be served to callers for
different circumstances. We provide sample HTML you can use when setting up these pages.
These files reside in the directory \ <CCS di r >\ pub\ ht m \ For s\ bl ender on the
Cisco Collaboration Server. Some HTML files reside in the \ CGi scoTH\ pub\ ht m \ For s\
directory on the Trailhead server. Individual filenames are included in the appropriate property
description.

See Maintaining Trailhead HTML Pages and Forms in this guide for more information on
HTML files.

General Trailhead Properties

Use the properties in the Tr ai | head. server. properti es file to configure the behavior of
Trailhead in a Cisco ICM environment.

adm nnane=
Property type: String
Default value: admin

This property identifies the administration username used to access the Trailhead control panel
(htt p: // <server >/ Trai | headAdmi n). Note that this user name is automatically
encrypted; when you edit this file, the name will appear differently.

50

adm npw=
Property type: String
Default value: None

This property identifies the administration password used to access the Trailhead control panel
(http://<server>/Trail headAdm n). Note that this user name is automatically
encrypted; when you edit this file, the name will appear differently.

autostart=

Property type: Boolean
Default value: False

This property indicates whether Trailhead should automatically start with the Web server. Be sure
not to set this property to true until you are sure that all of your media are properly configured.

dest chooser =
Property type: string
Default: none

Required. This property identifies the destination chooser used by the Trailhead server. In ICM
Web configurations, this should be Com.WebLine.Trailhead.DcRemote.

Specifying Trailhead Connections

Use these properties to set up the connections from your Trailhead servers to your Trailhead
media. Note that, even though connections are numbered sequentially, you can delete a
connection within the sequence without having to renumber your remaining connections.

In the properties that follow, note that "local"” properties refer to the Trailhead medium. Properties
that refer to "remote" values indicate the Trailhead server.

For more information on the Trailhead RMI connections, see Trailhead Components and
Connections.

connection<n>. | ocal server nane=

Property type: String

Default: trailhead

This property identifies the local name for this connection (the Trailhead server).
connection<n>. | ocal regi stryport=

Property type: Numeric
Default: 1099

This property identifies the local port for this connection (the Trailhead server).

51

connecti on<n>.| ocal passwor d=

Property type: String
Default: trailheadpw

This property identifies the password for this connection. The value here must match the value
indicated in the connection<n>.remotepassword property on the Trailhead medium. Note that this
password is automatically encrypted; when you edit this file, the value you enter here will appear
differently.

connecti on<n>. r enot eser ver name=

Property type: String
Default: blender

This property identifies the remote name for this connection (the Trailhead medium). The value
here must match the value in the connect i on<n>. | ocal ser ver nane property on the
Trailhead medium.

connecti on<n>. r enot ehost =

Property type: String

Default: None

This property identifies the remote host for this connection (the Trailhead medium).
connecti on<n>.renot eregi stryport=

Property type: Numeric
Default: 1099

This property identifies the remote port for this connection. (the Trailhead medium.) The value
here must match the value entered in the | ocal r egi st ryport property on the Trailhead
medium.

connecti on<n>. r enpt epasswor d=

Property type: String
Default: blenderpw

This property identifies the password for this connection. The value here must match the value
indicated in the connect i on<n>. | ocal passwor d property on the Trailhead medium. Note
that this password is automatically encrypted; when you edit this file, the value you enter here
will appear differently.

connecti on<n>. canrout e=
Property type: Boolean
Default; true

This property specifies whether this connection should appear on the list of connections that a
DcRemote destination choose tries to use when routing a session.

52

connecti on<n>. canqueue=

Property type: Boolean
Default: true

This property specifies whether this connection is usable to queue a call. This connection appears
in the dest i nat i on<n>queueconn property on the Trailhead medium.

connecti on<n>di sabl eaut oconnect =

Property type: Boolean
Default: false

This property allows you to disable attempts by the Trailhead server to automatically connect to
the Trailhead medium. Set this property to true if inbound communication is not possible through
your firewall. This setting ensures that the Trailhead server does not try to automatically connect
to the Trailhead medium. Instead, the Trailhead medium will instead poll the Trailhead server
from behind the firewall.

If the firewall will allow both inbound and outbound communication, set this property to false.
This setting ensures that the Trailhead server will connect to the Trailhead medium automatically,
initiating two-way communication through the connections.

Specifying a System Error Destination

On the Trailhead server, you need set up only one destination to handle system error. Use these
properties to establish a system error destintation on the Trailhead server.

desti nati on<n>. nane=

Property type: Valid file name
Default:

This property defines the name for a destination in your configuration. When specifying
destinations, number each destination sequentially, beginning with 1.

Example:
desti nationl. nanme=SysError

desti nati on<n>. type=

Property type: String
Default value:

This property lets you specify the type of response this destination will provide to web requests.
Acceptable values are:

Value Description
CALLONLY Basic Callback
COLLAB Web Collaboration
NOCALL Noncalling

53

On the Trailhead server, you need only set up a system error destination, which should be type
NOCALL.

desti nati on<n>. URL=
Property type: Valid URL
Default value: none

This property maps a valid URL to a particular destination. When a request is routed to the
destination, Trailhead serves the URL specified here.

We provide sample URLSs for different destination types. See Maintaining Trailhead HTML
Pages and Forms in this guide for more information for more information.

Note for NOCALL destinations: You can choose to server a URL here, or, instead, serve only
an HTTP error code and reason to the caller. If you choose to server an error code instead, do not
use this property; instead, use destination<n>errorcode and destination<n>errorreason,
described below.

desti nati on<n>errorcode=
Property type: Integer
Default; none

This property specifies an error number to send the user, rather than a URL.You can enter 404,
500, or any HTTP error code to send these errors.

desti nati on<n>errorreason
Property type: String
Default: System Error. Please try later.

This property explains the error specified in destination<n>errorcode.

Identifying the Callback Form

The callback form is the HTML page used to gather caller information to be submitted to the
ICM. Use this property to identify the callback form.

formurl =
Property type: String
Default value: None

Available in the general release of the product, this property identifies the callback form used to
gather information about the caller. We provide a sample, cal | f orm ht m . See ICM Input:
The Web request and Maintaining HTML forms and pages in this guide for more information.

54

Setting up the Log

The following properties let you establish a rotation of log files generated by Trailhead. Trailhead
creates new log files until it reaches the number of logs specified in the logcount property.

| ogpat h=
Property type: String
Default value:none

This property identifies the pathname to which logs are written. Be sure to end the path with a
forward slash.

| ogl i nes=

Property type: Numeric
Default value: 20000

This property sets the maximum number of lines per log file.

| ogcount =

Property type: Numeric
Default value: 2

This property indicates the number of log files in file rotation.

ver bose=

Property type: Integer
Default value: 3

This property indicates the level of verbosity of logged messages. Acceptable values are:

1 -- Urgent
2 -- Critical
3 -- Important

4 -- Informational

ti mestanpfil es=

Property type: boolean
Default: True

This property determines whether Trailhead appends log file names with the date and time of
creation. Log-1999-07-31-7-12_1.log

55

t hr eadf | oor =
Property type: Integer
Default: 20

This property specifies the minimum number of threads.

t hreadcei | i ng=

Property type: Integer
Default: 20
This property specifies the maximum number of threads.

56

On the Media Blender Server: The Trailhead medium
(Trailhead.properties)

Setting up the Trailhead medium involves these steps:

1. Define the Trailhead medium on the Media Blender
2. Configure Trailhead properties

Define the Trailhead Medium on the Media Blender

You must identify Trailhead as a medium in the properties file for Media Blender
(bl ender. properti es). Inthe Medi un# property, enter Tr ai | head. properti es.

Note: You must have the proper Blender key code to install and use the Trailhead medium.

Configure Trailhead Properties

Properties for configuring Trailhead are in the Tr ai | head. pr operti es file that resides in
the\ G scoMB\ servl et \ properti es\ bl ender directory on the Blender server. (You
identify this file to Media Blender using the Medium property in the Blender properties file.)
Use this property file to determine which events the Trailhead medium can accept and share. See
"Event Filters" in the Media Blender Reference Guide for complete information about event filter
parameters.

Use each property only once in each properties file. If you include a property more than once in a
file, Media Blender automatically recognizes the setting in the last occurrence of the property,
overwriting the value in preceding occurrences.

In addition to CTI event filter parameters, Trailhead.properties contains these properties:
nanme=

Display only. This property identifies the medium. It should be set to Trailhead.
package=

This property displays the Java package name of this Blender medium. In this file, it must be set
to Com.WebL.ine.Blender.Trailhead. This package must be accessible to the servlet engine (either
JWS or servlet exec) through its CLASSPATH. See your Installation Guide for information on
setting the Classpath.

serverport=

Property type: Numeric
Default: None
This property identifies the port Trailhead uses to connect to the Web PG.

57

dest chooser =

Property type: string
Default: Com.WebL.ine.Trailhead.DcICM

Required. This property identifies the destination chooser used by the Trailhead medium on the
Media Blender server. In ICM Web configurations, this should be
Com.WebLine.Trailhead.DcICM

Media Blender Startup Properties

Use these properties to adjust the amount of time Media Blender should wait for the incoming
Web PG connection at start up.

server connti neout =

Property type: numeric
Default; 120

This property specifies the amount of time Media Blender should wait for the incoming Web PG
connection at start up.

serverstartw t hout conn=

Property type: Boolean
Default: true

This property specifies whether to allow Media Blender to start if the timeout specified in
serverconntimeout is exceeded.

» If this property is set to true, the Media Blender will complete its own startup regardless of
whether it detects the incoming Web PG connection. Since the Web PG connection will not
exist, any route request messages sent to it will be routed to the System Error destination. The
Trailhead medium will continue to look for a connection and will generate alerts until one is
made.

» If this property is set to false, Media Blender will not start up if the Web PG connection is not
made within the serverconntimeout limit.

Specifying Trailhead Connections

Use these properties to set up the connections from your Trailhead servers to your Trailhead
media. Note that, even though connections are numbered sequentially, you can delete a
connection within the sequence without having to renumber your remaining connections.

In the properties that follow, note that "local” properties refer to the Trailhead medium. Properties
that refer to "remote” values indicate the Trailhead server.

58

connecti on<n>. | ocal server nane=
Property type: String
Default: blender

This property identifies the local name for this connection; that is, the name of the Trailhead
server end of the connection. This is the name that a destination must specify in a
destination<n>.queueconn property.

Note: In previous versions, the value for the Media Blender end of the connection was specified.

connection<n>. | ocal regi stryport=
Property type: Numeric
Default: 1099

This property identifies the local port for this connection (i.e. the Trailhead medium).

connecti on<n>. | ocal passwor d=
Property type: String
Default: blenderpw

This property identifies the password for this connection. The value here must match the value
indicated in the connection<n>.remotepassword property on the Trailhead server. Note that this
password is automatically encrypted; when you edit this file, the value you enter here will appear
as an encrypted code.

connecti on<n>. r enot eser ver name=
Property type: String
Default: trailhead

This property identifies the remote name for this connection; that is, the Trailhead server. The
value here must match the value in the connection<n>localservername property on the Trailhead
server.

connecti on<n>. r enpt ehost =

Property type: String
Default: None

This property identifies the host name of the Trailhead server.

59

connection<n>.renoteregi stryport=

Property type: Numeric
Default: 1099

This property identifies the remote port for this connection; that is, the Trailhead server. The
value here must match the value entered in the | ocal r egi stryport property on the
Trailhead server.

connecti on<n>. r enot epasswor d=
Property type: String
Default: trailheadpw

This property identifies the password for this connection. The value here must match the value
indicated in the connect i on<n>. | ocal ser ver passwor d property on the Trailhead
server. Note that this password is automatically encrypted; when you edit this file, the value you
enter here will appear in an encrypted code.

Specifying Trailhead Destinations

Use these properties to set up your Trailhead destinations. Note that, even though connections are
numbered sequentially, you can delete a connection within the sequence without having to
renumber your remaining connections.

desti nati on<n>. nane=
Property type: String
Default: None

This property defines the name for a destination in your configuration. When specifying
destinations, number each destination sequentially, beginning with 1.

Example:
desti nati onl. nane=Bost onl
desti nati on2. nane=Bost on2

desti nati on<n>. type=
Property type: String
Default:

This property lets you specify the type of response this destination will provide to web requests.
Acceptable values are:

Value Description
CALLONLY Basic Callback
COLLAB Web Collaboration
NOCALL Noncalling

60

desti nati on<n>. queueconn=

Property type: string
Default: None

This property is required for CALLONLY destinations. It identifies the local server name of a
connection, defined on a Trailhead server, to which queue requests are sent for this destination.

Note: This is a change from previous versions when the value of the Trailhead medium on the
Media Blender end of the connection was used.

desti nati on<n>. URL=

Property type: Valid URL
Default: None

This property maps a valid URL to a particular destination. When a request is routed to the
destination, Trailhead serves the URL specified here.

Note for NOCALL destinations: You can choose to serve a URL here, or, instead, serve only an
HTTP error code and reason to the caller. If you choose to serve an error code instead, do not use
this property; instead, use destination<n>errorcode and destination<n>errorreason, described
below.

We provide sample URLSs for different destination types. See Maintaining Trailhead HTML
Pages and Forms in this guide for more information.

desti nati on<n>. substi t ut e=

Property type: Boolean
Default: None

This property lets you specify whether data will be dynamically substituted into HTML fields on
the URL specified for the destination. This property should be set to True for COLLAB
destinations.

desti nati on<n>. error code=

Property type: Integer
Default: None

This property specifies that a HTTP error code should be sent to a user when callback is
unavailable or to handle crank or troublesome calls. Use this property for NOCALL destinations
if you want serve users an error code rather than an HTML page explaining the problem. If you
use this property, do not specify a URL in the dest i nat i on<n>. URL property for this
destination.

Acceptable values are 404, 500, or any numeric HTTP error code.

61

desti nati on<n>. errorreason

Property type: string
DefaultNone

This property explains the error specified in dest i nat i on<n>err or code.

Setting System Defaults

The following properties let you specify default destinations that should be used when the ICM
script returns any of these labels:

* ring
* busy
e default

In addition, you can set a default for when the ICM script returns an error.

desti nati on<n>. syst endef aul t =
Property type: Boolean
Default: False

This property lets you specify whether the destination should be used whenever the ICM script
returns a default label.

desti nati on<n>. syst enmbusy=
Property type: Boolean
Default: false

This property lets you specify whether the destination should be used whenever the ICM script
returns a busy label.

desti nati on<n>. syst emmoagent s
Property type: Boolean
Default: false

This property lets you specify whether the destination should be used whenever the ICM script
returns a ring label.

desti nati on<n>.systenerror=

Property type: Boolean
Default: false

This property lets you specify whether the destination should be used whenever the ICM script
returns an error label or any error occurs.

62

Specifying the Trailhead Input and Output Maps

Use these properties to identify the input and output maps used in your system.

i nmap=
Property type: Filename
Default: in.map.properties

This property identifies the file used to translate web-based data into data that can be used by the
ICM scripts. See the Input Map in this guide for more information

out map=

Property type: Filename
Default: out.map.properties

This property identifies the file used to translate information returned by the ICM script into
textual information that can be used by the Collaboration Server. See Creating the Output Map
for more information

ICM Label Information

icn abeldelimter=

Property type: Character
Default: - (hyphen)

This property identifies the delimiter used to separate the two distinct portions of the ICM label
output by scripts.Use this property if you are not using the IcmLabelLength method of parsing
ICM labels. For information on ICM script labels, see ICM Script Label Configuration in this
guide.

Note: If you specify a delimiter here, do not specify a label length using the i cml abel | engt h
property, explained below.

i cm abel | engt h=

Property type: Numeric
Default: None

This property lets you determine which portion of the ICM label should be used as a routing
address based on length. For more information, see ICM Script Label Configuration in this guide.
Note: If you specify a length here, do not specify a label delimiter using the

i cm abel del i m t er property, explained above.

63

Verifying URLS

checkurl s=

Property type: Boolean
Default: False

This property determines whether Trailhead or the Trailhead Medium should check for the
existence of the URLSs referred to by each destination.

On the Media Blender Server: The Input Map
(in.map.properties)

Trailhead's Input map (i n. map. properti es) is a text file that maps fields found on the
Trailhead callback form with ICM VRU fields. The format of each entry is as follows:

<| CM val ue> = <Web val ue>

For instance, the file might contain this entry:

CED=Rout e

This entry specifies that the value in the RouteAddr field on the web request is equal to the DN
(Dialed Number) value on the ICM system. In this way, the Input Map translates the information
from the incoming web request and populates a route request message submitted to ICM.

Note that you can map literal strings to ICM variables by enclosing strings in quotes. For
example, the following entry maps the literal 1000 to the DN field

DN="1000"

In this case, the string 1000 indicates a script number on the ICM. Passing a literal script number
through the DN field ensures the same script is run for all web requests.

A sample input map appears below:

DN="1000"

ANl =PhoneNunber
CED=Rout e
CALLVAR1=Want sCol | ab
CALLVAR2=User 2
CALLVAR3=User 3
CALLVAR4=User 4
CALLVAR5=Host
CALLVARG6=Ref er er
CALLVAR7=Accept - Language
CALLVAR8=Cal | backDel ay
CALLVAR9=User - Agent
CALLVAR10=

64

On the Media Blender Server: The Output Map
(out.map.properties)

Trailhead's Output Map (out . map. pr operti es) is a text file that maps ICM data with
textual data that can be recognized by the Collaboration Server. The output map repopulates the
caller data with values that have been returned by the ICM script.

The format of each entry in the file is as follows:

<| CM val ue> = <Call form val ue>

For instance, the file might contain this entry:
DN=PhoneNum

This entry specifies that the value in the DN field on the ICM system is equal to the phone
number field on the Collaboration Server. In this way, the Input Map translates the information
from the ICM script into data that can be used by the CCS.

We provide two sample output maps:
out. map. properties:

DN=

ANl =Rout e

CED=Nane

CALLVAR1=User 1
CALLVAR2=User 2
CALLVAR3=User 3
CALLVAR4=User 4
CALLVAR5=Host
CALLVARG6=Ref er er
CALLVAR7=Accept - Language
CALLVAR8=Cal | backDel ay
CALLVAR9=User - Agent
CALLVAR10=

cal | vars-out. map. properties

CALLVARl=cal | var 1
CALLVAR2=cal | var 2
CALLVAR3=cal | var 3
CALLVAR4=cal | var 4
CALLVAR5=cal | var5
CALLVAR6=cal | var 6
CALLVAR7=cal | var 7
CALLVAR8=cal | var 8
CALLVARO=cal | var 9
CALLVAR10=cal | var 10

65

On the Media Blender Server: The Peripheral Input Map

Trailhead's peripheral input map lets you load callback form data into Cisco ECTI server call
variables. To use this feature, you must set up a text file called an input map between the CTI
server and the Web callback form. This file is called cti . i n. map. properti es and resides
inthe\ G scoMB\ ser vl et\ properti es directory. The format of each entry is as follows:

<| CM vari abl e> = <Wb vari abl e>

For instance, the file might contain this entry:
CALLVAR2=user 1

This entry would ensure that the value in the User1l field on the callback form is passed into Call
Variable 2 on the CT]1 server.

Note that you can set the CTI server variable to a literal string rather than a Web variable. For
instance, consider the following example entry:

CALLVAR1="Web Cal I "
This line ensures that the words "Web Call" are passed to call variable 1.

We provide two sample CTI peripheral input maps:

cti.in.map. properties:

CALLVAR1I="Web Cal | "
CALLVAR2=user 1
CALLVAR3=user 2
#CALLVAR4=user 3
#CALLVARS=nane
#CALLVARG6=host
#CALLVAR7=r ef er er
#CALLVAR8=cal | backdel ay
#CALLVARO=

#CALLVAR10=

cal l vars-cti.in.map. properties

CALLVAR1=callvarl
CALLVAR?2=callvar2
CALLVAR3=callvar3
CALLVAR4=callvar4
CALLVARS5=callvar5
CALLVARG6=callvar6
CALLVART7=callvar7
CALLVARS8=callvar8
CALLVAR9=callvar9
CALLVAR10=callvar10

66

Maintaining HTML Pages and Forms

Our sample HTML pages provide for dynamic name substitution; Trailhead retrieves the caller
name and number from the callback form and inserts them into the appropriate HTML page. The
following HTML source code is taken from one of our sample pages, bostonl. htni .

CHTHL:

{HEAD>

({TITLE*Expect our call?! {Boston 1)}<{/TITLE>
{SCRIPT language="JavaScript">

Function sendCall()}

r
L

/f substitute in the callback data from form
document.callback.invokingUrl.value="<{subst data=requestfromurl/>";
document .callback.customerFirstHame .value=""<{subst data=name/>";
document.callback.phonedumber .value=""{subst data=phonenumber/>";
document.callback.RoutingAddr .value=""{subst data=route/>";

document .callback.Appl1.value="<subst data=user1/>";

document .callback.Appl2.value=""<subst data=user2/>";
document.callback.Appl3.value=""{subst data=user3;>";
document.callback.Appli._value=""{subst data=useri;>*;

document .callback.submit{);

H
L/SCRIPT>

“/HEAD

Note: All Trailhead forms must be served by the Trailhead server; this ensures proper substitution
of the invoking URL.

HTML File Location

The directories \ <CCS di r >\ pub\ ht m \ For ns\ on the Cisco Collaboration Server and

\ G scoTH\ pub\ ht M \ For ns\ on the Trailhead server contain samples of HTML pages
and forms that you can modify to suit your needs. You should, however, be familiar with HTML
if you intend to make changes. Changes you make here can affect the system functionality.

If you do make extensive changes to these forms, copy the modified forms to another location on
the server, but not in the Media Blender tree. Then, if you decide to upgrade Media Blender, you
will not lose your customized forms.

Note: Always make a backup copy before altering an HTML page.

This section describes the Trailhead callback form and the HTML pages used by Trailhead to
respond to different scenarios. It includes these sections:

e The Callback form

e The Web Collaboration HTML page
* The Basic Callback HTML page

* Pages for noncalling destinations

67

The Trailhead Start Page

We provide a sample page that links to the Trailhead server: launchTrailhead.html. You can use
this sample when designing how your Web site will provide access to Trailhead. The link to the
Trailhead server is shown below:

http://<servernane>/servl et/ Trail head

The Callback Form

The callback form is served to a caller who has requested callback from the Web. This form
provides Trailhead with information about the caller, such as the caller's name and phone number,
as well as the code to which the call should be routed.

The callback form should be accessed indrectly through the Trailhead servlet, using an HTML
link containing the URL: ht t p: / / <ser ver name>/ ser vl et/ Tr ai | head. This way, the
Web page containing the link (the callback button) will be accessible to the Collaboration server.

The callback HTML forms used in Trailhead configurations should be served by the Trailhead
server. If a Web site just points to the form without getting the substituted form from Trailhead,
then the site will not obtain the correct invoking URL; that is, the URL from which the caller
requested callback.

The fields on the callback form are described in detail in ICM Input: The Web request.

68

The Web Collaboration Pages

You must maintain an HTML page to be served to callers whose requests have been routed to a
Web Collaboration destination. We provide a sample page: success-v30. ht m , explained
below.

success-v30. htm

This sample page is designed to be served to a caller who has successfully submitted a request for
blended Collaboration. This page launches a Collaboration Server session.

Note that this form retrieves the caller's name and phone number from callform.html, placing it in
the text.

If the Collaboration Server is running on a different computer than Trailhead, you must edit
whichever success file you are using so that it points to the correct Collaboration server. A hidden
form appears at the end of the HTML source code of both of these files. You specify the CCS
server name at the beginning of this form, using the action field. Insert

htt p: <col | abor at i on- ser ver - nane> immediately before

/ servl et/ Com WebLi ne. WebLi ne. Ht m .PageCr eat or, as shown below:

Inser
httpdf< collaboration-se rver-name=
here. |

{t=--- this is a hidden Form, +{:h is autonatically launched on load ---3
{FORH name="callback™ action=""/servlct/Con.Uebline . Webline . Htal.PFageCreater” method=""FOST" target=-"appletWindow™}
{input type=hidden” naome="Connectiontode” UWALUE=""URLConnection»{®---value="socket"---»
{input type=-""hidden” name=""Debug” WLEE="0FF">}{f===value=""0H" ===}
{IHPUT TYPE=""hidden® HAME=-"CustondiFol loude' WLBE="0FF"*}>
CINPUT TYPE-"hidden™ HAHE-"Initfessionfage™ UALUE=""}
{INFUT TYPE="hidden” HAME="EndSessionPage’ PRLIE="""}
SIHPUT TYPE=“hidden™ HAME=""CancelRequesiPage’ WALLE="""3
LIHPUT TYPE="hidden™ HAME=""ServerBusyPage” VALUE="""}

Other Collaboration Samples

We include several other examples of HTML pages you might set up to provide Web
Collaboration. They are:

* bostonl. htni

* boston2. htni

e sanjosel. htm

* sanjose2. htm

* callvars-sanjosel. ht m (See Passing data to the Cisco ECTI server in this guide
for more information.)

69

The Basic Callback Page

You must maintain HTML pages that will be served to callers who will receive Basic callback in
response to a Web request. We provide several samples of Basic Callback pages:

* bostoncal lonly. htm
* sanjosecallonly. htn

Note that these forms retrieve the caller's name and phone number fromcal | f or m ht m , and
place it in the text.

A Collaboration session is not initiated; instead, Trailhead stores each request and Media Blender
then retrieves the requests and queues them to the switch.

Pages for Noncalling Destinations

Sometimes callers request callback during hours when the phone system is down. We provide
sample HTML pages you can use to design your own pages to cover these instances.

For instance, you may alter these pages so that they request user information; that way, you can
retrieve valuable information about potential customers even when callback is prohibited.

afterhours. htm

This sample Web page is designed to be served to callers who place calls outside of your call
center's normal hours of operation.

sysnoagents. ht m
This sample page is designed to be served to the caller when no agents are available for callback.

syserror. htm

This sample page informs the caller that a technical problem prohibits response.

sysbusy. ht m
The sample page informs the caller that all agents are busy.

hol i day. ht m

This sample page informs the caller that the contact center is closed due to a holiday.

70

Index

A

AUMINISITALION ...ttt bbbt bbb s e b b st e b b e st b b st e b b e st et et e ne et bt eee 7
T 10T oT 0] =T o A SRR PR PRSP 11
automatic number identification (AN ..o 29, 34, 64, 65
C

caller entered digits (CED) ...vcviveieieieie et e sttt st sn e e e e nne e 29, 34, 64, 65
(@8 1o 1O TN L= TN o o] (] o= Y2 SSSSSPR 13,42
(08 10 (o0 1 (=3N o o] o1 o |V T OO TP PR URTURUPRUPRTO 13
(000] 00 010 1 T<T 1T U PP TP P UURTOPRUPRUUROPN 8, 11,17
CONFIGUIALTION TIIES ... bbbt 50, 57, 64, 65
(o010 T=Tod (o] o SO PSP 11, 50, 57
(OB I =T oY) T T TSP PR URTUR PR UPRO 30
(O IRV g T o] (=L OSSPSR 32, 66
D

AESLINALIONS ...t 14,18, 41, 42, 45, 46, 47, 48, 49, 70
(o L1 LT I a0 g1 2= (91N RS 29, 34, 64, 65
011701 3T = S 22
F

L=V [0)Y < OO TSR ORI 21,24
L L= RSOOSR 50, 57, 64, 65
Firewall COMMUNICATION ... bbb ettt e e e 11,19
H

HTIML PAJES ..ottt sttt sttt ettt s et b e seebe st e s e ebesbesesbe st ereeteseereabeseerens 27, 45, 67, 68, 69, 70
HTTPPIOXY MOOE ...ttt ettt et bbbttt et sb e b e bt e b e e Reem b e ebeebesbeebeebeebeebeene et e nbenae s 19
|

L0 1V T o S 27, 34, 38
ICM WED OPLION ...ttt st e s e s et et e s testesreena e e e eeseeneeneeneenreas 8, 17,27
LT o044 T USRS 29, 30, 64
Intelligent Contact ManagemEeNT.........cc.oiv i ieieie e ste e e e 8, 27, 34, 35, 38, 39
L

o or: 1| BT (<ol (o] TR R PR PRORT 21,22,24,25
N

NETWOIKING CONTIGUIATION ...ttt bbbttt se e bbbt e e sae e 19
@]

OUDOUNT SOCKET CONNEBCTIONS ...ttt bt bbbttt e bbb eene e e b b e 19
(01U o101 8 1T o I TR U OO P PRSP U RO URTUUROPRTOPPRN 31,65
P

L T o TCT = T T o S 32, 66
R

Remote Method INVOCation (RIMI)cooiviiiiiie i e e e 11, 50, 57

71

=T 070 1 1] o S 40

L0 T01 =T GO 11 B =) PSS 31,35
S

L 1o] 01 SOV USSP 34, 35, 38
SYSEEM AETAUITSttt b e bbbt b et et se et e b bt e b e e e e e b e b 49
T

TRAIHTNEAA ...ttt r e 7,11, 50, 57, 68
TranSPArENt HT TP MOUE. ...c..ciueiiiiietete ettt bbbttt b et b e b e bt eb e e s e et e b sb e et e eneeneenbe st 19
W

WWED PG bbb bbbt 22

72

	€
	Cisco ICM Web Option:� Trailhead Configuration and� Administration Guide
	Cisco Trailhead, Version 4.0
	Table of Contents

	Introduction
	Intended Audience and Scope
	Additional Information
	The Trailhead Menu

	System Overview
	ICM Web Option Components
	Cisco Collaboration Server (CCS)
	Cisco Trailhead (CTH)
	Cisco Media Blender (CMB)
	Cisco Intelligent Contact Management (ICM)

	Cisco ICM Web Peripheral Gateway (Web PG)
	Cisco Enterprise Computer Telephony Integration (ECTI) Server
	Automatic Call Distributor (ACD)

	Trailhead Components and Connections
	About Trailhead connections
	Connection Types
	To allow route requests to get from the Trailhead server to the Web PG
	To initiate Basic Callback requests

	Understanding Trailhead Destinations
	Destinations that Provide Response to Web Callback Requests
	How Destinations Reflect Your Call Centers

	Destinations that Handle Situations When Response is Not Available
	Destinations that Handle ring, busy, error, and default ICM Conditions
	Call Flow Through the Cisco ICM Web Option
	About Destination Choosers

	Firewall Configuration and Networking
	Firewall Configurations
	Polling Over Outbound Socket Connections Mode
	Two-way Socket Connection Mode
	Classic HTTP Proxy Mode
	Transparent HTTP Mode

	Networking Considerations

	Trailhead Failover Using LocalDirector
	How LocalDirector Helps
	Limitations
	Configuration for Trailhead Failover
	Trailhead and Media Blender Connections
	Trailhead Destinations
	
	Step 1: Create Directory and Move Forms
	Step 2: Configure the Property Files

	Duplexed Web PG
	Redundant LocalDirectors

	Setting up the LocalDirector
	Installing LocalDirector
	Creating a Virtual Server
	Creating the Probe
	Sample LocalDirector Configuration File

	Understanding ICM input and output
	ICM Input: The Web request
	Visible fields
	Hidden fields
	Customizing your form

	The Route Request Message to the Web PG

	Mapping ICM and Web Data
	Mapping Web Data to Route Request Variables
	Using ICM Call Variable 10 (Lucent switches only)

	Mapping ICM Variables to Web Variables
	Using the Output Map to Enhance ICM/Collaboration Reporting
	€

	Passing Data to the ECTI Server and Back to the Web
	Sample files
	callvars-cti.in.map.properties
	callvar-out.map.properties
	callvars-sanjose1.html

	ICM Script Considerations
	How the ICM Script is Selected
	Using a Variable or Literal in the Dialed Number Field
	Understanding the ICM Script
	ICM Script Tasks
	Evaluate Available Resources
	Choose between Collaboration and Basic Callback
	Associate a Unique ICM Identifier with the Web request (optional)
	Return Labels that Correspond to Trailhead Destinations

	Example

	ICM Script Label Configuration
	Reserving a number of characters for the destination name

	ICM Scripting Tip
	Edit in.map.properties on the Media Blender Server
	Configure the ICM
	Set up the ICM routing script

	Reporting on Web Calls
	
	
	To associate an ICM identifier with each Web call:
	To generate a report that shows the call key:

	Configuring Destinations
	Defining and Naming Destinations
	Setting a Destination Type
	About Callonly Destinations
	Understanding the destination<n>.queueconn Property
	Determining the URL to be Served by Each Destination
	Example 1: Setting up a Basic Callback Destination
	Example 2: Setting up a Destination for Web Collaboration
	Example 3: Setting up a Noncalling Destination
	Destinations for Other Script Terminations

	Configuration File Reference
	On the Trailhead Server: Trailhead.server.properties
	General Trailhead Properties
	adminname=
	adminpw=
	autostart=
	destchooser=

	Specifying Trailhead Connections
	connection<n>.localservername=
	connection<n>.localregistryport=
	connection<n>.localpassword=
	connection<n>.remoteservername=
	connection<n>.remotehost=
	connection<n>.remoteregistryport=
	connection<n>.remotepassword=
	connection<n>.canroute=
	connection<n>.canqueue=
	connection<n>disableautoconnect=

	Specifying a System Error Destination
	destination<n>.name=
	destination<n>.type=
	destination<n>.URL=
	destination<n>errorcode=
	destination<n>errorreason

	Identifying the Callback Form
	formurl=

	Setting up the Log
	logpath=
	loglines=
	logcount=
	verbose=
	timestampfiles=
	threadfloor=
	threadceiling=

	On the Media Blender Server: The Trailhead medium (Trailhead.properties)
	Define the Trailhead Medium on the Media Blender
	Configure Trailhead Properties
	name=
	package=
	serverport=
	destchooser=

	Media Blender Startup Properties
	serverconntimeout=
	serverstartwithoutconn=

	Specifying Trailhead Connections
	connection<n>.localservername=
	connection<n>.localregistryport=
	connection<n>.localpassword=
	connection<n>.remoteservername=
	connection<n>.remotehost=
	connection<n>.remoteregistryport=
	connection<n>.remotepassword=

	Specifying Trailhead Destinations
	destination<n>.name=
	destination<n>.type=
	destination<n>.queueconn=
	destination<n>.URL=
	destination<n>.substitute=
	destination<n>.errorcode=
	destination<n>.errorreason

	Setting System Defaults
	destination<n>.systemdefault=
	destination<n>.systembusy=
	destination<n>.systemnoagents
	destination<n>.systemerror=

	Specifying the Trailhead Input and Output Maps
	inmap=
	outmap=

	ICM Label Information
	icmlabeldelimiter=
	icmlabellength=

	Verifying URLs
	checkurls=

	On the Media Blender Server: The Input Map (in.map.properties)
	On the Media Blender Server: The Output Map (out.map.properties)
	
	out.map.properties:
	callvars-out.map.properties

	On the Media Blender Server: The Peripheral Input Map
	
	cti.in.map.properties:
	callvars-cti.in.map.properties

	Maintaining HTML Pages and Forms
	HTML File Location
	The Trailhead Start Page
	The Callback Form
	The Web Collaboration Pages
	success-v30.html
	Other Collaboration Samples

	The Basic Callback Page
	Pages for Noncalling Destinations
	
	afterhours.html
	sysnoagents.html
	syserror.html
	sysbusy.html
	holiday.html

	Index

