

Java API Reference for Network Compliance Manager
CiscoWorks

Corporate Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000
 800 553-NETS (6387)
Fax: 408 526-4100

Text Part Number: OL-10253-02

http://www.cisco.com/

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT
NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT
ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR
THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION
PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO
LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part
of UCB’s public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE
PROVIDED “AS IS” WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED
OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL
DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR
INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

CCSP, CCVP, the Cisco Square Bridge logo, Follow Me Browsing, and StackWise are trademarks of Cisco Systems, Inc.; Changing the Way We Work,
Live, Play, and Learn, and iQuick Study are service marks of Cisco Systems, Inc.; and Access Registrar, Aironet, BPX, Catalyst, CCDA, CCDP, CCIE,
CCIP, CCNA, CCNP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco
Systems logo, Cisco Unity, Enterprise/Solver, EtherChannel, EtherFast, EtherSwitch, Fast Step, FormShare, GigaDrive, GigaStack, HomeLink, Internet
Quotient, IOS, IP/TV, iQ Expertise, the iQ logo, iQ Net Readiness Scorecard, LightStream, Linksys, MeetingPlace, MGX, the Networkers logo,
Networking Academy, Network Registrar, Packet, PIX, Post-Routing, Pre-Routing, ProConnect, RateMUX, ScriptShare, SlideCast, SMARTnet, The
Fastest Way to Increase Your Internet Quotient, and TransPath are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United States
and certain other countries.

All other trademarks mentioned in this document or Website are the property of their respective owners. The use of the word partner does not imply a
partnership relationship between Cisco and any other company. (0601R)

Java API Reference Guide for Network Compliance Manager
© 2007 Cisco Systems, Inc. All rights reserved.

2 Java API Reference Guide

Table of Contents
Getting Started..5

Intended Audience ..5
Document Conventions...5

Requirements..5
NCM ..5
License..5
Operating Systems..6
Java...6

Overview ...7
Why integrate? ..7
Why Java? ..7
Programming Model..7

Centralized or Distributed Applications ...7
Request/Response..7
Threading model ...8
Relationship to JDBC ..8

Windows Installation ...9
Installing from CD..9

LibraryJARs...9
NCM API JAR ...9

Configuration Files ..9
Samples ..9
Documentation ..9
Setting Up a Command-line Environment...10
Setting up an integrated development environment..10

Unix Installation...11
Installing from CD..11

LibraryJARs...11
NCM API JAR ...11

Configuration Files ..11
Samples ..11
Documentation ..12
Setting Up a Command-line Environment...12

Java API Reference Guide 3

Setting up an integrated development environment..12
Programming with the NCM Java API...13

Working with the Session object ...13
Session contexts ...13
UserIDs and Permissions..13

Executing requests..13
Relationship between the API and the CLI or Telnet/SSH Proxy............................13

Handling results ..14
Status ..14
Simple results..14
Complex results: ResultSet type ...14
Exceptions...14

Metadata ...15
Integration Hooks..16

Run External Application tasks ...16
Callbacks...16
Approver callback interface...16
Approver use cases ..17
Approver coding ..17
Cleaner callback interface...17
Cleaner use case ..18
Cleaner coding ..18

Commands..19
Permissions...19
Commands and Return Values ...19
ResultSet Contents ...22

Permissions...27
Appendix A: NCM Documentation ..29
Appendix B: Obtaining Documentation, Obtaining Support, and Security Guidelines ...30

4 Java API Reference Guide

Getting Started

Intended Audience
This document is intended for network engineering who:

• Write scripts to automate device configuration.

• Are comfortable with basic Java programming, and have an understanding of
database schema and access methods.

• Have knowledge of the CiscoWorks Network Compliance Manager (NCM)
Command Line Interface (CLI). CLI documentation is available in Appendix A of
the User Guide for Network Compliance Manager 1.2.1, or can be accessed
within the CLI using the “help” command. Information is also available through
the Java API.

• Integrate various third party systems with NCM 1.2.1, such as network
management, workflow, and trouble ticketing solutions.

Document Conventions
This document uses the following conventions:

• File names, directory names, and answers/arguments supplied by the user are
represented in italics. For example: NCMAPI.zip

• Display of on-screen activity is represented in Courier font. For example:
 Volume Serial Number

Requirements
The following are required to use the NCM Java API.

NCM
To use this version of the NCM Java API, you must be running NCM 1.2.1. The server
must be running and accessible to the client where your application runs via port 1099
(Java API).

A copy of the NCM client package is required to write the programs and run the
examples. The NCM client package is available as part of the NCM distribution.

Note: The server can be bound to a port other than 1099, but in this case, the session
API must be explicitly provided with the port number.

License
You must have a valid license on the NCM server to use the NCM Java API.

Java API Reference Guide 5

Operating Systems
The NCM Java API has been tested with the following operating systems:

• Windows 2000 Professional with Service Pack 2

• Windows 2000 Server with Service Pack 2

• Windows 2003 Server

• Red Hat Linux Enterprise AS (update 2 and 3)

• Solaris 9.x

Java
You will need to download the Java JDK from Sun. The JDK can be downloaded from
http://java.sun.com/downloads/

The NCM Java API is tested with Java version 1.4.2.

6 Java API Reference Guide

http://java.sun.com/downloads/

Overview
NCM is a powerful software solution for network configuration control with sophisticated
Web and command-line interfaces for interactive use with NCM. Java Application
Programming Interface (API) adds another dimension to NCM by integrating NCM with
other software. You can link NCM to a variety of third-party and custom-built
applications, such as ticketing, asset tracking, workflow, change request, and network
management software solutions.

Why integrate?
When a ticketing or NMS product is used side-by-side with NCM, the two products are
good, but when they interact with each other, they are even better. By using the Java
API to integrate NCM with third party software, you can multiply the value provided by
both products. This means fewer errors, faster turnaround and improved day-to-day
efficiency.

Why Java?
Java is a modern, object-oriented language that can run on a variety of platforms. It
lends itself to high performance, scalable, highly available solutions. Java applications
are also flexible and highly maintainable. Java is the right choice when you have
professional development resources, performance is important, and your solution is
expected to be in use for the long term.

Programming Model
The NCM Java API is designed to expose a straightforward programming model with a
relatively small set of objects to learn.

Centralized or Distributed Applications
The NCM Java API can be accessed from your NCM server machine. This is the
simplest programming model.

The NCM Java API also enables you to run applications remotely from the NCM server.
This means you can run NCM on machine A and API-based applications on machine B.
In distributed software terminology, this is called remoting. By remoting your application,
you will create a client/server application where NCM is the server and your application
is the client. This might be desirable for load balancing, ease of setting up a
development environment, security, or a variety of other reasons.

If you use remoting, you will need your network configured to allow traffic on port 1099
(Java RMI) to reach the NCM server.

Request/Response
The NCM Java API generally follows a request/response model. Your application makes
a request via the exec method and waits for a response from the server. Details are
explained in the “Programming with the NCM Java API” section.

Java API Reference Guide 7

Threading model
The NCM Java API is synchronous on the client side and asynchronous on the server
side. This means that when your application makes a request, the calling thread in your
application is blocked until a response is available from the server.

This response may mean that your command has been executed and the results
returned (such as list user command, which returns a list of users immediately), or
it may mean that an NCM task has been created and queued for future execution (such
as the get snapshot command, which will schedule a NCM snapshot task).

If you want to issue multiple overlapped commands, you will need to use standard Java
multi-threading techniques in your application.

Relationship to JDBC
You may notice a strong similarity between the NCM Java API and certain JDBC calls.
In particular, NCM returns results in a ResultSet object derived from JDBC. This
makes it easier for developers familiar with JDBC to get up and running with the NCM
API. Some of the ResultSet methods are not applicable to NCM, and will return
exceptions if used. These are detailed in the “Programming with the NCM Java API”
section.

8 Java API Reference Guide

Windows Installation

Installing from CD
This section describes how to install all the necessary components of the NCM Java API
from the installer CD.

From the NCM installation CD, use either the Server or Client installation options. With
either of these options, you will get a copy of:

• The Java Runtime Environment

• The NCM client JAR

• Any library JAR files necessary to run the NCM SDK

If you are running the SDK application on a machine that already has a NCM server
installed, no further installation is required. Use the Client install if you will be connecting
to a remote NCM server for your SDK application.

Note: The file paths referenced in this document assume you installed NCM to the
default file location, c:\rendition. If you installed NCM to a different location, then
replace c:\rendition with the root directory that you provided at install time.

LibraryJARs
Library JARs are located at c:\rendition\jre\lib\ext. If you do not run your
SDK application with the JRE, then you must set your classpath accordingly.

NCM API JAR
The NCM API JAR is located at c:\rendition\client\truecontrol-
client.jar. It may be moved to another location.

Configuration Files
NCM and the NCM Java API use several configuration files with an RCX extension. If
you use the NCM Java API on the same machine that you installed NCM to, the RCX
files will already be where they need to be, in the directory c:\rendition\jre. If
you want to use the API on another machine, you need to manually copy the RCX files
to the JRE/JDK directory on the other machine.

The RCX configuration files used by the NCM API are:

• messages.rcx
• logging.rcx
• commandlineclient.rcx

Samples
The API samples are located in c:\rendition\client\sdk\examples\java.

Documentation
The NCM Java API documentation consists of the Javadocs for the API. Javadocs are
located in <install directory>\client\sdk\docs\api.

Java API Reference Guide 9

Setting Up a Command-line Environment
If you are invoking javac and java from the command line, you can easily set up a
command line environment to prepare to use the NCM API. Append truecontrol-
client.jar to your classpath.

Note: Do not put the truecontrol-client.jar in jre/lib/ext. NCM’s Java
processes will not start.

Example:
set
CLASSPATH=%CLASSPATH%;.;c:\src\java\myproject\classes;c:\rendition\clie
nt\truecontrol-client.jar
To verify that your environment is correct, please compile and run Example0.java.
Here is what you should see:
C:\Rendition\client\sdk\examples\java>set CLASSPATH=.;c:\rendition\client\
truecontrol-client.jar

C:\Rendition\client\sdk\examples\java>javac -d . Example0.java

C:\Rendition\client\sdk\examples\java>java com.rendition.api.examples.Exam
ple0
Starting Example0
Session connectivity verified

C:\Rendition\client\sdk\examples\java>

Setting up an integrated development environment
Setting up for an IDE is similar to the command-line environment. You need to provide
the location of truecontrol-client.jar to your IDE. In many editors, this is an
option for the project. Details follow for selected IDEs.

JCreator Pro:
1. Go to the menu Project:Project Settings.

2. In the project settings dialog box, go to the Required Libraries tab and select
New…

3. Enter the name “truecontrolAPI”.

4. Click the Add button and then select Add Archive from the popup menu.

5. Navigate to the correct directory and select truecontrol-client.jar.

Jbuilder 5:
1. Go to the menu Project:Project Properties.

2. In the dialog box, select the Paths tab then the Required Libraries sub-tab.

3. Click Add and then the New button.

4. Enter the name “truecontrolAPI.”

5. Navigate to the correct directory and select truecontrol-client.jar

10 Java API Reference Guide

Unix Installation

Installing from CD
This section describes how to install all the necessary components of the NCM Java API
from the installer CD.

From the NCM installation CD, use either the Server or Client installation options. With
either of these options, you will get a copy of:

• The Java Runtime Environment

• The NCM client JAR

• Any library JAR files necessary to run the NCM SDK

If you are running the SDK application on a machine that already has an NCM server
installed, no further installation is required. Use the Client install if you will be connecting
to a remote NCM server for your SDK application.

Note: The file paths referenced in this document assume you installed NCM to the
default file location, <install directory>/jre. If you installed NCM to a different
location, then replace <install directory>/jre with the root directory that you
provided at install time.

LibraryJARs
Library JARs are located at <install directory>/jre/lib/ext. If you do not
run your SDK application with the JRE, then you must set your classpath accordingly.

NCM API JAR
The NCM API JAR is located at <install
directory>/jre/client/truecontrol-client.jar. It may be moved to
another location.

Configuration Files
NCM and the NCM Java API use several configuration files with an RCX extension. If
you use the NCM Java API on the same machine that you installed NCM to, the RCX
files will already be where they need to be, in the directory <installed
directory>/jre. If you want to use the API on another machine, you need to
manually copy the RCX files to the JRE/JDK directory on the other machine.

The RCX configuration files used by the NCM API are:

• messages.rcx
• logging.rcx
• commandlineclient.rcx

Samples
The API samples are located in /usr/local/client/sdk/examples/java

Java API Reference Guide 11

Documentation
The NCM Java API documentation consists of the Javadocs for the API. Javadocs are
located in <install directory>/client/sdk/docs/api.

Setting Up a Command-line Environment
If you are invoking javac and java from the command line, you can easily set up a
command line environment to prepare to use the NCM API. Append truecontrol-
client.jar to your classpath.

Do not put the truecontrol-client.jar in jre/lib/ext. NCM’ Java processes will
not start.

To verify that your environment is correct, compile and run Example0.java. Here is
what you should see:
bash# export CLASSPATH= $CLASSPATH :.:/<install
directory>/client/truecontrol-Client.jar

bash# <install directory>/jre/bin/javac -d . Example0.java

bash# <install directory>/jre/bin/java com.rendition.api.examples.Exam
ple0

Starting Example0
Session connectivity verified

<install directory>/client/sdk/examples/java>

Setting up an integrated development environment
Setting up for an IDE is similar to the command-line environment. You need to provide
the location of truecontrol-client.jar to your IDE. In many editors, this is an
option for the project. Details follow for selected IDEs.

JCreator Pro:
1. Go to the menu Project:Project Settings.

2. In the project settings dialog box, go to the Required Libraries tab and select
New…

3. Enter the name “truecontrolAPI.”

4. Click the Add button then select Add Archive from the popup menu.

5. Navigate to the correct directory and select truecontrol-client.jar.

Jbuilder 5:
1. Go to the menu Project:Project Properties.

2. In the dialog box, select the Paths tab then the Required Libraries sub-tab.

3. Click Add then the New button.

4. Enter the name “truecontrolAPI.”

5. Navigate to the correct directory and select truecontrol-client.jar

12 Java API Reference Guide

Programming with the NCM Java API

Working with the Session object
All interaction with the NCM Java API starts with a Session object.

Session contexts
Session.open creates a session context for execution of commands. This method
actually contacts the NCM server via Java RMI on port 1099, and authenticates the user
using the supplied arguments. The server parameter is optional; if omitted, localhost will
be contacted.

Make sure that you close the session context when done with it via the Session.close
method. Like file handles, there is a finite supply of sessions.

Session objects are thread-safe, so you may use the Session object across threads to
do overlapping operations.

UserIDs and Permissions
When opening the session, you must provide a user name and password for a valid
NCM user. NCM makes no distinction between the user identities used to log into the
WebUI, CLI, or Telnet/SSH Proxy and those used to access the API.

Each NCM API call will be validated against the user identity provided to ensure the user
has sufficient privileges to run the requested operation, just as the user’s privileges
would be validated by the WebUI, CLI, or Telnet/SSH Proxy.

We suggest that you set up dedicated NCM users for API access, with appropriate
privilege levels for the kinds of applications you are writing. For example, an application
that only retrieves data from NCM might require a Limited Access user, whereas an
application to remove out-of-date information from the system would require Admin
privileges.

When calling Session.open, note that the user name and password are case
sensitive. If you provide bad authentication information, you will receive a
CiscoAPIException.

Executing requests
You can send commands to the NCM server through the Session object.

Relationship between the API and the CLI or Telnet/SSH Proxy
Session.exec is used to send a request to the NCM API. The commands accepted
by Session.exec are, with the exceptions noted below, syntactically identical to
those accepted by the CLI or the Proxy interface interactive mode. You may find it
convenient to test commands intended for your programs by telnetting to your server
and entering the commands manually.

All commands accepted by the CLI or Telnet/SSH Proxy are valid for Session.exec,
except for the show version, import, and help commands. The API does not
support these.

Java API Reference Guide 13

Handling results
This section covers the returned objects and exceptions thrown by Session.exec.

Status

The return value from Session.exec is a Return object. Return.getSucceeded
will return true if the command completed successfully; or false if the
command failed. You can get extended information codes via
Return.getReturnStatus. The status codes vary based on the type of request;
they are documented in the Commands section.

Certain API commands are processed by the NCM server asynchronously. In these
cases, the return value only indicates that the command was accepted without errors.
The final result of executing the command must be determined by waiting until the
corresponding NCM task has completed and inspecting the task results. The commands
that are processed asynchronously are indicated by a checkmark in the appropriate
column of the table in the Commands section.

Simple results
If the command returns a simple String result, use Return.getString to examine the
result. The commands with String results are shown in the Commands section.

Complex results: ResultSet type
Many commands return a complex result with many fields, or several rows of such field-
based data. The commands with complex results are shown below in the Commands
section.

The NCM API uses JDBC’s ResultSet interface to provide access to complex results.
You can learn more about this interface in numerous books and online resources for
JDBC. The samples Example1.java, Example2.java and Example3.java all
show how to work with ResultSet data.

To interact with ResultSet data, you must know the valid columns and types for each
command. This information is provided below in the Commands section, under the table
heading Return Value(s). You can also use the metadata interface to work with
ResultSets in a generic way, so that you do not have to hard code the data types being
returned from a given command.

Exceptions

The following exceptions are sent by Session.exec. Details can be found in the
javadocs.

• CiscoAPIException: Generic API exceptions.
• ResultSetException: Thrown when incorrect method is used to retrieve a field

from a ResultSet, e.g. calling getInt on a String field.
• NotSupportedException: Thrown when an unsupported ResultSet method is

called. See the javadocs to determine which methods are supported.

14 Java API Reference Guide

Metadata
Metadata (meaning data-about-data) describes the data fields returned in a ResultSet.
This can be used to determine how many fields were returned in the result set, the name
for each field, and the data type for each field. ResultSet.getMetaData is the
method that returns metadata for a result set.

Example3.java shows a useful application for metadata, processing any user-
supplied command. You can see how metadata is required to print results from a
command whose identity is not known at compile time.

Note: Developers familiar with C-based languages such as Java and C++ should
take special note: the column indexes for all metadata methods are 1-based not 0-
based.

Java API Reference Guide 15

Integration Hooks

Run External Application tasks
NCM’ Run External Application task enables you to invoke applications and scripts from
within NCM. This includes the ability to run your own NCM API applications. In other
words, you can extend NCM’ functionality by using this API to write your own application
that integrates with outside applications and datasources.

Using the Web UI, you can configure NCM to invoke your own application when certain
system events occur. Note that if you need to call out to third party software from your
custom application, you have several options:

• Use that application’s Java API, if one is provided.

• Use that application’s non-Java API via RMI.

• Use a communication channel such as message queuing, CORBA, sockets, and
so on.

• Interact via the file system or databases.

• Call that application directly via Runtime.getRuntime().exec()

Callbacks
There are two important callback methods from NCM to your Java code that you can use
to customize the NCM engine:

• The Approver interface

• The Cleaner interface

Note that these callbacks cannot be remoted. The code must be present on the NCM
server. If desired, you can provide a server-side stub which uses your own RMI calls to
pass the call along to the client.

Also note that the following directions require you to modify NCM’ configuration files.
Make sure to keep a backup copy, as a corrupted configuration may make the server
unstable.

Approver callback interface
The approver interface is provided to allow an external ticketing system to approve or
deny a particular user’s access to a device.

NCM will call the user-provided approver in the following circumstances:

• Before the Telnet/SSH Proxy opens a device session –
approveInterceptorSessionLogin() is invoked

• Before a device configuration is modified – hasModifyConfigPermission() is
invoked

• Before a device group configuration is modified –
hasGroupModifyConfigPermission() is invoked

• Before any CLI command is processed – hasPermission() is invoked

16 Java API Reference Guide

See the javadoc comments for details on when these methods are invoked, and what
parameters are passed. Note, some methods are overloaded.

Approver use cases
Here are two possible cases where this might be useful. The cases posit integration of
NCM with a third-party ticketing system (3PT).

Case 1: External task approval

• Network Engineer – Schedules a config deployment for ticket T and work request
W.

• NCM – Requests approval for change to device D with ticket T and work request
W.

• Ticketing System – Returns true or false with a reason R
• NCM – Lets the task run, or marks it as failed setting the Result to 'not approved

by 3PT because R'

Third party ticketing system (3PT) should return true or false synchronously using
internal data (such as time of day and ticket status) so no timeout is needed.

Case 2: External session approval

• Network Engineer – Requests session on Device D for work request W.
• NCM – Requests approval for connection to device D for work request W
• Ticketing System – Returns true or false with a reason R
• NCM – Starts the session or displays the error 'Session not approved by 3PT

because R'

Approver coding
NCM will use the configuration file appserver.rcx to determine what class to use for the
session approver. A default do-nothing (always approve) approver,
com.rendition.api.DefaultApprover, is provided by NCM.

To install your own approver, follow these steps:

• Code your own approver that implements the
com.rendition.api.Approver interface

• Modify "approver/className" option in appserver.rcx file, specifying your own
class.

• Build a JAR file that contains all your new classes and copy it into
%JBOSS_HOME%/server/default/lib directory.

Cleaner callback interface
The cleaner interface is provided to allow custom actions upon user exiting a NCM
device session. NCM will call the user-provided cleaner when the Telnet/SSH Proxy
closes a device session.

Java API Reference Guide 17

Cleaner use case
Case 1: External change annotation

• Network Engineer – Configures Device D for work request W. Closes session.
• NCM – Calls cleaner for connection to device D for work request W

• Custom code – Calls out to ticketing system

• Ticketing System – Returns reason R for change

• Custom code – Calls NCM API to copy reason R into custom data on device

Cleaner coding
NCM will use the configuration file appserver.rcx to determine what class to use for the
session cleaner. A default do-nothing cleaner,
com.rendition.api.DefaultCleaner, is provided by NCM.

To install your own cleaner, follow these steps:

• Code your own cleaner that implements the com.rendition.api.Cleaner
interface

• modify "cleaner/className" option in appserver.rcx file, specifying your own
class

• build a JAR file that contains all your new classes and copy it into
%JBOSS_HOME%/server/default/lib directory

18 Java API Reference Guide

Commands
This section provides information for issuing commands and receiving the correct result
data types.

Permissions
When invoked via the NCM Java API, the required user permissions for all commands
are the same as for the Telnet/SSH Proxy interactive mode. The commands are
documented in the “Permissions” section.

Commands and Return Values
The following table lists the commands and return values.

Command Success Code Return Value (s) Asynchronous
activate device 200 null

add advanced script 200 null

add authentication 200 String

add command script 200 null

add device 201 null

add device to group 200 null

Add diagnostic 200 null

add event 200 null

add group 200 null

Add group to parent group 200 null

Add parent group 200 null

add ip 200 null

add system message 200 null

add user 207 null

annotate access 200 null

annotate config 200 null

configure syslog 200 null

deactivate device 200 null

del access 200 null

del authentication 200 null

del device 200 null

del device data 200 null

del device from group 200 null

del drivers 200 null

del event 200 null

Java API Reference Guide 19

Command Success Code Return Value (s) Asynchronous
del group 200 null

Del group from parent group 200 null

del ip 200 null

del session 200 null

del script 200 null

del system message 200 null

del task 217 null

del user 211 null

deploy config 200 null √

diff config 200 null

discover driver 200 null √

discover drivers 200 null √

get snapshot 200 null √

list access 200 ResultSet

list access all 200 ResultSet

list basicip 200 Collection of String

list config 200 ResultSet

list config all 200 ResultSet

list device 501 ResultSet

list device data 200 ResultSet

list deviceinfo 200 Collection of String

list diagnostic 200 Collection of String

list drivers 200 ResultSet

list event 200 ResultSet

list groups 200 ResultSet

list icmp 200 Collection of String

list int 200 Collection of String

list ip 200 ResultSet

list ip all 200 ResultSet

list module 200 ResultSet

list ospfneighbor 200 Collection of String

list port 200 ResultSet

list routing 200 Collection of String

List script 200 ResultSet

20 Java API Reference Guide

Command Success Code Return Value (s) Asynchronous
list session 200 ResultSet

list system message 200 ResultSet

list task 200 ResultSet

list task all 513 ResultSet

list user 511 ResultSet

Mod advanced script 200 String

mod authentication 200 String

Mod command script 200 String

mod device 204 null

Mod diagnostic 200 String

mod group 200 null

mod ip 200 String

mod module 200 null

mod port 200 null

mod task 215 null

mod unmanaged device 200 null

mod user 209 null

passwd 200 null √

pause polling 200 null

ping 200 String √

reload server options 200 null

resume polling 200 null

run advanced script 200 null

run command script 200 String

run diagnostic 200 String √

run script 200 String √

show access 200 ResultSet

show basicip 200 String

show config 200 String

show device 200 ResultSet

show device config 200 String

show device latest diff 200 String

show deviceinfo 200 String

show diagnostic 200 String

Java API Reference Guide 21

Command Success Code Return Value (s) Asynchronous
show event 200 ResultSet

show fastlookup 200 String

show group 200 ResultSet

show icmp 200 String

show int 200 String

show ip 200 ResultSet

show latest access 200 ResultSet

show module 200 ResultSet

show ospfneighbor 200 String

show polling status 200 String

show port 200 ResultSet

show routing 200 String

show script 200 String

show session 200 ResultSet

show session commands 200 String

show snapshot 200 String

show system message 200 ResultSet

show task 221 ResultSet

show user 219 ResultSet

synchronize 200 String √

traceroute 200 String √

ResultSet Contents
Where the Commands and Return Values table lists a ResultSet return type, these
are the data types returned for columns 1 through N:

Command ResultSet Contents starting with column 1
list device data
list config
list config all

java.lang.Integer deviceDataID
java.lang.String dataBlock
java.lang.String blockType
java.util.Date createDate
java.lang.String comments
java.lang.Integer deviceAccessLogID
java.lang.Short blockFormat

list drivers java.lang.Integer driverLookupID
java.lang.Integer deviceID
java.lang.String baseModelName
java.lang.String driverName

22 Java API Reference Guide

Command ResultSet Contents starting with column 1
show access
list access
list access all
show latest access

java.lang.Integer deviceAccessLogID
java.lang.String displayName
java.lang.String actionTaken
java.lang.String accessTrigger
java.util.Date createDate
java.lang.Integer createUserID
java.lang.Integer interceptorLogID
java.lang.String comments
java.lang.Short noPrune
java.lang.String externalChangeRequestID
java.lang.Integer deviceID
java.lang.String changeEventData
java.lang.String deviceDataCustom1
java.lang.String deviceDataCustom2
java.lang.String deviceDataCustom3
java.lang.String deviceDataCustom4
java.lang.String deviceDataCustom5
java.lang.String deviceDataCustom6

list device
show device

java.lang.Integer deviceID
java.lang.String primaryFQDN
java.lang.String hostName
java.lang.String primaryIPAddress
java.lang.String consoleIPAddress
java.lang.String nATIPAddress
java.lang.String tFTPServerIPAddress
java.lang.Integer consolePort
java.lang.String deviceName
java.lang.String serialNumber
java.lang.String assetTag
java.lang.String softwareVersion
java.lang.String firmwareVersion
java.lang.String vendor
java.lang.String model
java.lang.String deviceType
java.lang.String geographicalLocation
java.lang.String timeZone
java.lang.String deviceFunction
java.lang.String comments
java.util.Date createDate
java.util.Date lastAccessAttemptDate
java.util.Date lastAccessSuccessDate
java.util.Date lastSnapshotDate
java.lang.String lastAccessAttemptStatus
java.lang.Integer lastModifiedUserID
java.lang.Short excludeFromPoll
java.lang.Short canUseChangeAgents
java.lang.String accessMethods
java.lang.String modemNumber
java.lang.Short managementStatus

Java API Reference Guide 23

Command ResultSet Contents starting with column 1
java.lang.String feedSource
java.util.Date lastImportDate
java.util.Date lastRecordModifiedDate
java.lang.String changeEventData
java.lang.Integer mostRecentConfigID
java.lang.Integer lastConfigChangeUserID
java.lang.Integer latestStartupRunningDiffer
java.lang.String deviceCustom1
java.lang.String deviceCustom2
java.lang.String deviceCustom3
java.lang.String deviceCustom4
java.lang.String deviceCustom5
java.lang.String deviceCustom6

list groups
show group

java.lang.Integer deviceGroupID
java.lang.String deviceGroupName
java.util.Date createDate
java.lang.String comments
java.lang.String deviceGroupCustom1
java.lang.String deviceGroupCustom2
java.lang.String deviceGroupCustom3
java.lang.String deviceGroupCustom4
jjava.lang.String deviceGroupCustom5
java.lang.String deviceGroupCustom6

java.lang.Integer deviceCount

show session
list session

java.lang.Integer interceptorLogID
java.util.Date startDate
java.util.Date endDate
java.lang.Integer userID
java.lang.Integer deviceID
java.lang.String deviceIP
java.lang.String sessionType
java.lang.String sessionData
java.lang.Short status
java.lang.String interceptorLogCustom1
java.lang.String interceptorLogCustom2
java.lang.String interceptorLogCustom3
java.lang.String interceptorLogCustom4
java.lang.String interceptorLogCustom5
java.lang.String interceptorLogCustom6

list system message
show system message

java.lang.Integer eventID
java.lang.Integer eventUserID
java.lang.Integer eventDeviceID
java.lang.String eventType
java.util.Date eventDate
java.lang.Short eventClass
java.lang.Integer eventTaskID
java.lang.String eventText

24 Java API Reference Guide

Command ResultSet Contents starting with column 1
list task
show task

java.lang.Integer scheduleTaskID
java.lang.Integer deviceGroupID
java.lang.Integer succeededChildCount
java.lang.Integer failedChildCount
java.lang.Integer pendingChildCount
java.lang.Integer parentTaskID
java.util.Date createDate
java.util.Date scheduleDate
java.lang.String comments
java.lang.Integer duration
java.lang.Short status
java.lang.String taskType
java.lang.Integer taskUserID
java.lang.Short retryCount
java.lang.Short retryInterval
java.lang.Short repeatType
java.lang.Short repeatWeekday
java.lang.Integer repeatInterval
java.lang.Integer deviceID
java.lang.Integer deviceDataID
java.lang.String result
java.lang.Short expensive
java.lang.String taskData
java.util.Date startDate
java.lang.Integer resultConfigID

list user
show user

java.lang.Integer userID
java.lang.String username
java.lang.String firstName
java.lang.String lastName
java.lang.String userPassword
java.lang.String emailAddress
java.util.Date createDate
java.lang.String timeZone
java.lang.Short requiredUser
java.lang.String aaaUserName
java.lang.String aaaPassword
java.lang.Short useAaaLoginForProxy
java.lang.String userCustom1
java.lang.String userCustom2
java.lang.String userCustom3
java.lang.String userCustom4
java.lang.String userCustom5
java.lang.String userCustom6

show event
list event

java.lang.Integer eventID
java.lang.Integer eventUserID
java.lang.Integer eventDeviceID
java.lang.String eventType
java.util.Date eventDate

Java API Reference Guide 25

Command ResultSet Contents starting with column 1
java.lang.Short eventClass
java.lang.Integer eventTaskID
java.lang.String eventText
java.lang.String eventData
java.lang.Integer configPolicyID

show ip
list ip
list ip all

java.lang.Integer ipID
java.lang.String ipValue
java.lang.String ipMask
java.lang.Integer ipPriority
java.lang.String ipName
java.lang.String comments
java.util.Date changeDate
java.lang.Short ipType
java.lang.Short usedToAccess
java.lang.Integer devicePortID
java.lang.Integer lastModifiedUserID
java.lang.Integer deviceID

show module
list module

Integer deviceModuleID
Integer deviceID
String slot
String moduleModel
String moduleDescription
String moduleOS
String firmwareVersion
String hardwareRevision
Integer memory
String moduleCustom1
String moduleCustom2
String moduleCustom3
String moduleCustom4
String moduleCustom5
String moduleCustom6
String comments
String serialNumber

show port
list port

Integer devicePortID
Integer deviceID
String portCustom1
String portCustom2
String portCustom3
String portCustom4
String comments
String portName
String portAllows
String portType
String portStatus
String description

26 Java API Reference Guide

Permissions
The following table describes user permissions that are required to execute the CLI
commands described in the “Commands” section of this document. These roles are the
default roles created by NCM. An administrator can create new permission groups and
roles, and assign them to users.

User Permissions Matrix

 System Administration
User Description Reconfigure Devices

Log into enable mode
View unmasked passwords
Run configuration scripts
Deploy configuration
Change passwords

Highly Sensitive
Manage users
Delete historical information
Edit/delete any users's tasks
Define custom diagnostics

Other
Administrative
settings
Authentication
rules
View all
telnet/SSH
sessions

Group Tasks
Custom scripts &
diagnostics
Snapshots & polling
Driver discovery
Syslog configuration
Password deployment
Import
FQDN lookup

Modify NCM
Information
Devices
Groups
Configuration comments

Admin

Admins are highly
trusted users
responsible for
administering the
NCM application,
managing users,
setting policy,
and running
network-wide
operations
requiring a high
degree of skill
and care. They
have permission
to take any action
in the NCM
system on any
device.

All Devices X X X X

Power User

Power users are
highly trusted
expert engineers
allowed to
perform most
actions in the
system. They can
reconfigure and
otherwise act on
groups of devices
in the system.
They may be
restricted as to
which devices
they have
permission to
reconfigure.

Specified Devices X X X

User Permissions Matrix

 System Administration
User Description Reconfigure Devices

Log into enable mode
View unmasked passwords
Run configuration scripts
Deploy configuration
Change passwords

Highly Sensitive
Manage users
Delete historical information
Edit/delete any users's tasks
Define custom diagnostics

Other
Administrative
settings
Authentication
rules
View all
telnet/SSH
sessions

Group Tasks
Custom scripts &
diagnostics
Snapshots & polling
Driver discovery
Syslog configuration
Password deployment
Import
FQDN lookup

Modify NCM
Information
Devices
Groups
Configuration comments

Full Access

Full Access users
are qualified
network
engineers trusted
with passwords to
configure some
or all devices in
the network. They
have permission
to modify most
information in the
NCM database,
and can
reconfigure
devices one-at-a-
time but not in
batch. They may
be restricted as to
which devices
they have
permission to
reconfigure.

Specified Devices X

Limited
Access

Limited Access
users are
operator users
that do not have
passwords to
configure network
devices. They
have permission
to view but not
modify most
information in
NCM. Sensitive
information such
as device
passwords will be
masked out. They
cannot run batch
operations or
operations which
would reconfigure
network devices.

No Devices

28 Java API Reference Guide

Appendix A: NCM Documentation
To open any of the available NCM documentation, on the on the menu bar click Docs.
NCM also includes context-sensitive help that you can access via the Help icon on the
top of each page of the Web interface.

To open any of the available documents, on the menu bar click Docs. The CiscoWorks
Network Compliance Manager Documentation window opens. Click the title of the
document you want to view in PDF. NCM also provides context-sensitive help that you
can access via the Help icon on the top of each page of the Web interface.

• User Guide for Network Compliance Manager 1.2.1  Includes information on
how to use NCM.

• Context-Sensitive Help  Click the Help icon on any page for Help.

• Device Driver Reference for Network Compliance Manager 1.2.1  Includes
device-specific information for configuring devices to work with NCM.

• PERL, Java, and SOAP API Reference Guides  Includes instructions for using
the Application Programming Interfaces for PERL, Java, and SOAP.

Java API Reference Guide 29

Appendix B: Obtaining Documentation, Obtaining Support, and
Security Guidelines
For information on obtaining documentation, obtaining support, providing documentation
feedback, security guidelines, and also recommended aliases and general Cisco
documents, see the monthly What’s New in Cisco Product Documentation, which also
lists all new and revised Cisco technical documentation, at:
http://www.cisco.com/en/US/docs/general/whatsnew/whatsnew.html

30 Java API Reference Guide

http://www.cisco.com/en/US/docs/general/whatsnew/whatsnew.html

Appendix C: CLI/API Command Reference

__

activate device  Mark a device as activated.

Synopsis:

activate device [-ip <IP address>] [-host <Hostname>] [-fqdn <Fully Qualified Domain
Name>]

Description:

-ip  a.b.c.d where 0 <= a,b,c,d <= 255

• -host  A valid hostname

• -fqdn  A valid Fully Qualified Domain Name

Example:

activate device -ip 207.99.30.226

__

add advanced script Add a new advanced script.

Synopsis:

mod advanced script [-id <Script ID>] [-name <Script Name>] [-newname <New Name>]
[-description <New Description>] [-scripttype <New Script Type>] [-family <New Device
Family>] [-language <New Script Language>] [-parameters <New Parameters>] [-script
<New Script Text>]

Description:

• - id <Script ID>  ID of the advanced script to edit.

• -name <Script Name>  Name of the advanced script to edit

• -newname <New Name>  New name for the script being modified.

• -description <New Description>  New description for the script being modified.

• -scripttype <New Script Type>  New script type (i.e. user defined subcategory).

• -family <New Device Family>  New device family for the script being modified.

• -language <New Script Language>  New language for the script being modified
- must be a supported language such as Expect or Perl.

• -parameters <New Parameters>  New command line parameters for the script
being modified.

• -script <New Script Text>  New script text.

Example:

add advanced script -name "Extended Ping" -description "Run extended ping to desired
address" -scripttype "Troubleshooting scripts" -family "Cisco IOS" -language "Expect" -
parameters "-l /usr/etc/log.txt" –script "send(\"extended ping $Target_IP$\")"

Java API Reference Guide 31

__

add authentication  Modify device password information.

Synopsis:

add authentication -loc <Location> [-ip <IP address>] [-host <Hostname>] [-fqdn <Fully
Qualified Domain Name>] [-snmpro <Read only community string(s)>] [-snmprw <Read
write community string(s)>] [-user <Username>] [-passwd <Password>] [-enableuser
<Enable username>] [-enablepasswd <Enable password>] [-connectionmethods
<Connection methods>] [-accessvariables <Access variables>] [-start <Task start date>]
[-appendsnmpro] [-appendsnmprw] [-sync] [-group <Group name>]

Description:

This command can modify passwords on a specific device or device group, or update
what NCM knows of a device or network's password information. The -ip option provides
information specific to the device. Otherwise, the command adds a network-wide
password rule to NCM. When using this command to modify passwords on a device, the
modification operation is actually a scheduled task.

• -loc  The location to which password information should be written. Valid
values for this argument are "db", "device", and "group". "db" tells the command
that password information should be changed only in NCM's database. "device"
tells the command that the password changes should be made on the device as
well. "group" performs the same function as "device," but across all devices in the
group.

• ip  a.b.c.d where 0 <= a,b,c,d <= 255: The device to which this password
information should apply.

• host  A valid hostname: An existing device to which this password information
should apply.

• fqdn  A valid Fully Qualified Domain Name: An existing device to which this
password information should apply.

• snmpro  When used in conjunction with -loc db, this argument is taken as a
single community string understood by NCM as the read only community string
for the device or network. When used in conjunction with -loc device, this
argument is taken as a comma-seperated list of read only community strings to
be, either set on the device, or appended to an existing list of read only
community strings (depends on whether or not the -appendsnmpro flag was
supplied).

• snmprw  When used in conjunction with -loc db, this argument is taken as a
single community string understood by NCM as the read write community string
for the device or network. When used in conjunction with -loc device, this
argument is taken as a comma-seperated list of read write community strings to
be, either set on the device, or appended to an existing list of read write
community strings (depends on whether or not the -appendsnmprw flag was
supplied).

• user  Username.

• passwd  Password.

32 Java API Reference Guide

• enableuser  ADDITIONAL username to get to "enable" mode.

• enablepasswd  ADDITIONAL password to get to "enable" mode.

• connectionmethods  The methods used by NCM to connect to devices. It can
be telnet, serial_direct, or SSH.

• accessvariables  To override variables in the script, such as prompts.

• start -- YYYY:MM:DD:HH:mm. The first date on which the task will run. Use this
option only if the argument to the -loc flag is "device".

• appendsnmpro  Supply this option if read only community strings should be
appended to any existing on the device. Use this option only if the argument to
the -loc flag is "device".

• appendsnmprw  Supply this option if read write community strings should be
appended to any existing on the device. Use this option only if the argument to
the -loc flag is "device".

• sync  Indicates that the command should return only after the password
change task is complete. Do not use this option with -start.

• group  The group name for performing this command across all devices in a
group.

Example:

add authentication -loc db -ip 207.99.30.226 -passwd fish -snmpro public -enablepasswd
31337
__

add command script  Add a new command script.
Synopsis:

add command script -name <Name> [-description <Description>] [-scripttype <Script
Type>] -mode <Mode> [-driver <Driver List>] -script <Script Text>

Description:

• -name <Name>  Name for the new command script.

• -Description  The descriptive name of the new command script.

• Scripttype <Script Type>  Script type, for example a user-defined subcategory.

• -mode <Mode>  The command script mode.

• -driver <Driver List> List of applicable drivers provided as a comma separated
list of internal driver names.

• -script <Script Text> Script text.

Examples:

mod command script -id 22 -newname "Set Duplex" -description "Sets the interface
duplex configuration" -scripttype "Interface Management Scripts" mod command script -
name "Extended Ping" -mode "Cisco IOS enable" –driver
"CiscoIOSGeneric,CiscoIOSSwitch" -script "extended ping $Target_IP$"

__

Java API Reference Guide 33

add device  Add a device to NCM.

Synopsis:

add device -ip <IP address> [-hostname <Host name>] [-comment <Comment>] [-
Description: <Device name>] [-model <Device model>] [-vendor <Device vendor>] [-
domain <Domain name>] [-serial <Serial number>] [-asset <Asset tag>] [-location
<Location>] [-unmanaged <Unmanaged>] [-nopoll <Do not poll>] [-consoleip <Console
IP address, if using console server>] [-consoleport <Console Port>] [-tftpserverip <TFTP
server IP address, if using NAT>] [-natip <NAT IP address>] [-useconsoleserver <true or
false>] [-accessmethods <Comma-separated list of access methods>]

Description:

• -ip  a.b.c.d where 0 <= a,b,c,d <= 255

• -hostname  The device's host name

• -comment  Additional information regarding the device.

• -Description  The descriptive name of the device (informational only).

• -model  The device's model (such as 2620).

• -vendor  The device's vendor (such as Cisco).

• -domain  A fully qualified domain name.

• -serial  The device's serial number.

• -asset  The device's asset tag.

• -location  The device's location.

• -unmanaged  0: Mark this device as managed by NCM. 1: Mark this device to
be unmanaged by NCM.

• -nopoll  0: Mark this device to be polled for changes. 1: Mark this device as not
to be polled for changes.

• -consoleip  a.b.c.d where 0 <= a,b,c,d <= 255

• -consoleport  The port number

• -tftpserverip  a.b.c.d where 0 <= a,b,c,d <= 255

• -natip  a.b.c.d where 0 <= a,b,c,d <= 255

• -useconsoleserver  True, if the device uses a console server. False, if the
device does not. If this option is not provided, it is assumed that the device does
not use a console server.

• -accessmethods  A comma-separated list of access methods, or "none". The
set of access methods: {telnet, ssh, SCP, FTP, TFTP, SNMP}. If this option is not
provided, NCM tries all access methods when attempting to connect to the
device.

Example:

add device -ip 207.99.30.226

__

34 Java API Reference Guide

add device to group  Add a device to a device group.

Synopsis:

add device to group [-ip <IP address>] [-host <Hostname>] [-fqdn <Fully Qualified
Domain Name>] -group <Device group>

Description:

• -ip  a.b.c.d where 0 <= a,b,c,d <= 255

• -host  A valid hostname

• -fqdn  A valid Fully Qualified Domain Name

• -group  The name of the device group to which the device should be added.

Example:

add device to group -ip 207.99.30.226 -group tech-dev

__

add diagnostic  Add a new custom diagnostic script.

Synopsis:

add diagnostic -name <Name> [-description <Description>] -mode <Mode> [-driver
<Driver List>] -script <Script Text>

Description:

• -name <Name>  Name for the new diagnostic.

• -description <Description>  escription for the new diagnostic.

• -mode <Mode>  Command script mode

• -driver <Driver List>  List of applicable drivers - provided as a comma
separated list of internal river names.

• -script <Script Text> Dagnostic script text.

Example:

add diagnostic -name "Show IP CEF" -description "Gather IP CEF information"-mode
"Cisco IOS enable" -driver "CiscoIOSGeneric,CiscoIOSSwitch" –script "show ip cef"

__

add event rule  Add a event rule.

Synopsis:

add event rule -name <Event Rule Name> -action <Event Action> -receiverhost
<Hostname or IP Address> [-receiverport <Port>] [-events <List of Event Types>] [-
community <Community String>]

Java API Reference Guide 35

Description:

Add new event rule. It will subscribe provided host to NCM events.

• -name The name identifier for event rule

• -action  event type, for now only snmp supportes, use -action snmp

• -receiverhost  A valid hostname or ip address

• -receiverport  A numeric port, if not provided, then 162 will be used

• -events  List of event types, separated by column. If not provided, then ALL will
be used

• -community  Community string, if not provided, then public will be used.

Example:

add event rule -name Name1 -receiverhost host1 -action snmp -community private -
events "Device Added:Device Deleted"

__

add group  Add a group to NCM.

Synopsis:

add group -name <Name> -type <Type> [-comment <Comment>]

Description:

• -name  The name of the group to add.

• -type  The type of the group to add. "device" is currently the only valid
argument to this option.

• -comment  Additional information about the group.

Example:

add group -name "border routers" -type device -comment "The group containing all
border routers."

__

add group to parent group  Add a device group to a parent device group.

Synopsis:

add group to parent group -parent <Parent group name> -child <Child group name>

Description:

• -parent  Name of the parent group

• -child  Name of the child group

Example:

add group to parent group -parent "North America" -child "West Region"

__

36 Java API Reference Guide

add ip  Add new secondary ip.

Synopsis:

add ip -deviceip <Device IP address> -ipvalue <Value> [-comment <Comment>] [-
usetoaccess <Use to Access Device>]

Description:

• -deviceip  The device's ip address a.b.c.d where 0 <= a,b,c,d <= 255

• -ipvalue  The ip value a.b.c.d where 0 <= a,b,c,d <= 255

• -comment  Additional information regarding the device.

• -usetoaccess  Use this ip Value to access its device, 0: yes, 1: no, default: no

Example:

add ip -deviceip 207.99.30.226 -ipvalue 207.99.23.23 -comment "my own ip"

__

add parent group  Add a parent group to NCM.

Synopsis:

add parent group -name <Name> -type <Type> [-comment <Comment>]

Description:

• -name  The name of the parent group to add.

• -type  The type of the parent group to add. "device" is currently the only valid
argument to this option.

• -comment  Additional information about the parent group.

Example:

add parent group -name "North America" -type device -comment "Parent group to roll up
East, Central and West regions."

__

add system message  Add a system message.

Synopsis:

add system message -message <System Message> [-ip <IP address>] [-host
<Hostname>] [-fqdn <Fully Qualified Domain Name>]

Description:

An email message (containing the system message) will be the result of an added
system messages if the system is configured to send email for added events.

• -message  The text of the system message

• -ip  a.b.c.d where 0 <= a,b,c,d <= 255

• -host  A valid hostname

• -fqdn  A valid Fully Qualified Domain Name

Java API Reference Guide 37

Example:

add system message -ip 207.99.30.226 -message "Connectivity to the border router has
been restored."
__

add user  Add a user to NCM.

Synopsis:

add user -u <Username> -p <Password> -fn <First name> -ln <Last name> [-email
<Email address>] [-aaausername <Username>] [-aaapassword <AAA Password>] [-
useaaaloginforproxy <Use AAA Logins for Proxy>]

Description:

• -u  Username

• -p  Password

• -fn  First name

• -ln  Last name

• -email  Email address

• -aaausername  AAA username for this user.

• -aaapassword  AAA password for this user.

• -useaaaloginforproxy  Whether to user AAA logins for the Proxy Interface for
this user (0=No,1=Yes).

Example:

add user -u johnd -p fish -fn john -ln doe -email johnd@nowhere.net.

__

annotate access  Modify the comments on, or the displayed name of, a device
access record.

Synopsis:

annotate access -id <Device access record ID> [-comment <Comment>] [-name
<Name>] [-customname <Custom name>] [-customvalue <Custom value>]

Description:

• -id  Specifies a device access record.

• -comment  Additional information regarding the access record.

• -name  An optional name for the access record.

• -customname  The custom field name

• -customvalue  The custom field value

Example:

annotate access -id 2 -comment "Device tainted at this point." -name "Intrusion
detected"
__

38 Java API Reference Guide

annotate config  Add a comment to the specified config.

Synopsis:

annotate config -id <Config ID> -comment <comment>

Description:

Note that comments added by means of this command are not added to the config itself.
They are stored separately along with the config.

• -id  The ID of the config on which you are commenting.

• -comment  Additional information regarding the config.

Example:

annotate config -id 1754 -comment "north campus group template."

__

assign driver  Manually assign driver to device.

Synopsis:

assign driver [-ip <IP address>] [-id <Device ID>] -name <Driver Name>

Description:

• -ip  a.b.c.d where 0 <= a,b,c,d <= 255

• -id  A valid device id

• -name  A valid internal driver name, supported by system

Example:

assign driver -ip 207.99.30.226 -name CiscoIOSGenericNoLog

__

configure syslog  Configure a device to send syslog messages to NCM’s change
detection facilities.

Synopsis:

configure syslog [-ip <IP address>] [-group <Groupname>] [-host <Hostname>] [-fqdn
<Fully Qualified Domain Name>] [-rep <Task repeat period>] [-sync] [-start <Task start
date>] [-comment <Snapshop comment>] [-usesyslogrelay <IP address>]

Description:

Have NCM configure the specified device to send all syslog messages necessary for
NCM's change detection facilities to function optimally to NCM's syslog server.

• -ip  a.b.c.d where 0 <= a,b,c,d <= 255

• -group  A valid group name. Do not use this option with -ip (exactly one of -ip
or -group must be specified).

• -host  A valid hostname

• -fqdn  A valid Fully Qualified Domain Name

Java API Reference Guide 39

• -rep  (#min | #:# | #days | #weeks | #months) where # is a positive integer. #:#
is hours:minutes--the two integers do not have to be the same. Do not use this
option with -sync.

• -sync  Indicates the command should return only after the Configure Syslog
task is complete. Do not use this option with -rep or -start.

• -start  YYYY:MM:DD:HH:mm. The first date on which the task will run.

• -comment  An optional comment about the Configure Syslog task.

• -usesyslogrelay  Indicates to the syslog configuration task that the device
currently logs to syslog relay host. Supply this option if you want to setup
forwarding on that relay host rather than have the device log directly to NCM
syslog server. The specified IP address is taken to be the IP address of the relay
host.

Example:

configure syslog -ip 207.99.30.226

__

connect  Connect to a device.

Synopsis:

connect [-login] [-method <telnet|ssh|ssh1|ssh2>] [-override] []

Description:

Connect to a device through NCM’ Proxy Interface via telnet or ssh. If you are connected
to a device through a console server, you may hit ctrl-\ to return to the NCM shell after
logging out of the device.

• -login  Bypass single sign-on and instead take the user to the device login
prompt.

• -method  Method used to connect to devices outside of NCM or for devices in
NCM when single sign-on is turned off (implies -login option).

• -override  Force a connection to a device in the event that simultaneous
connection warning or prevention is turned on.

• -Hostname, Fully Qualified Domain Name, or Primary IP Address to use to
lookup the device to connect to. The characters * and ? can be used as
wildcards.

• -Port to use to connect to devices outside of NCM.

Example:

connect 207.99.30.226

__

40 Java API Reference Guide

deactivate device  Mark a device as deactivated.

Synopsis:

deactivate device [-ip <IP address>] [-host <Hostname>] [-fqdn <Fully Qualified Domain
Name>]

Description:

• -ip  a.b.c.d where 0 <= a,b,c,d <= 255

• -host  A valid hostname

• -fqdn  A valid Fully Qualified Domain Name

Example:

deactivate device -host rtr5.vfm.lab

__

del access  Delete access records.

Synopsis:

del access [-id <Device Access Record ID.>] [-cutoff <Date>]

Description:

This command can delete a single access record when provided that record's id (via. the
option "-id"), or all access records prior to a given date (via the option "-cutoff"). Provide
exactly one of "-id", "-cutoff". Note that deleting access records will cause all configs
associated with the deleted access record to also be deleted.

• -id  A device access record ID.

• -cutoff  YYYY:MM:DD:HH:mm. All access records prior to this date will be
deleted.

Example:

del access -id 6288

__

del authentication  Deletes all password information associated with the specified
device.

Synopsis:

del authentication [-ip <IP address>] [-host <Hostname>] [-fqdn <Fully Qualified Domain
Name>]

Description:

• -ip  a.b.c.d where 0 <= a,b,c,d <= 255: The device for which password
information should be deleted.

• -host  A valid hostname: The device for which password information should be
deleted.

• -fqdn  A valid Fully Qualified Domain Name: The device for which password
information should be deleted.

Java API Reference Guide 41

Example:

del authentication -ip 207.99.30.226

__

del device  Delete the specified device.

Synopsis:

del device [-ip <IP address>] [-host <Hostname>] [-fqdn <Fully Qualified Domain
Name>]

Description:

• -ip  a.b.c.d where 0 <= a,b,c,d <= 255

• -host  A valid hostname

• -fqdn  A valid Fully Qualified Domain Name

Example:

del device -ip 207.99.30.226

__

del device data  Delete device configuration and diagnostic data.

Synopsis:

del device data [-id <Config ID>] [-cutoff <Date>]

Description:

This command can delete a single device data block when provided that device data id
(via. the option "-id"), or all device data prior to a given date (via the option "-cutoff").
Provide exactly one of "-id", "-cutoff".

• -id  A config ID

• -cutoff  YYYY:MM:DD:HH:mm. All configs prior to this date will be deleted.

Example:

del device data -id 866227436

__

del device from group  Delete a device from a device group.

Synopsis:

Deletes device from group [-ip <IP address>] [-host <Hostname>] [-fqdn <Fully Qualified
Domain Name>] -group <Device group>

Description:

• -ip  a.b.c.d where 0 <= a,b,c,d <= 255

• -host  A valid hostname

• -fqdn  A valid Fully Qualified Domain Name

• -group  The name of the device group from which the device should be
deleted.

42 Java API Reference Guide

Example:

del device from group -ip 207.99.30.226 -group tech-dev

__

del device from parent group  Remove a device group from a parent device
group.

Synopsis:

Deletes a device from parent group -parent <Parent group name> -child <Child group
name>

Description:

• -parent  Name of the parent group

• -child  Name of the child group

Example:

del group from parent group -parent "North America" -child "Costa Rica NOC"

__

del drivers  Delete all drivers associated with a device.

Synopsis:

deletes drivers [-ip <IP address>] [-host <Hostname>] [-fqdn <Fully Qualified Domain
Name>]

Description:

• -ip  a.b.c.d where 0 <= a,b,c,d <= 255

• -host  A valid hostname

• -fqdn  A valid Fully Qualified Domain Name

Example:

del drivers -ip 207.99.30.226

__

del group  Delete a group from NCM.

Synopsis:

deletes group -name <Name> -type <Type>

Description:

Specify the group by both its name and type.

• -name  The name of the group to be removed.

• -type  The type of the group to be removed.

Example:

del group -name "border routers" -type "device"

__

Java API Reference Guide 43

del ip  Delete the specified ip.

Synopsis:

del ip -deviceip <Device IP address> -ipvalue <Value>

Description:

• -deviceip  The device's ip address a.b.c.d where 0 <= a,b,c,d <= 255

• -ipvalue  The ip value a.b.c.d where 0 <= a,b,c,d <= 255

Example:

del ip -deviceip 207.99.30.226 -ipvalue 207.99.31.23

__

del script  Delete an existing command script, advanced script, or diagnostic.

Synopsis:

del script [-id <Script / Diagnositc ID>] [-name <Script / Diagnositc Name>] [-type <Script
/ Diagnositc Type>]

Description:

Delete the indicated command script, advanced script or diagnostic. The desired script
or diagnostic can be specified by ID, or by a combination of name and type. If more than
one name match occurs, then an error will be reported and you must specify the unique
script desired by ID.

• -id <Script / Diagnositc ID>  ID of the desired script or diagnostic.

• -name <Script / Diagnositc Name>  Name of the desired script or diagnostic.

• -type <Script / Diagnositc Type>  Type of the desired script or diagnostic - may
be command, advanced or diagnostic.

Examples:

del script -id 5
del script -name "Edit Port Duplex" -type command

__
del session  Delete an interceptor log record.

Synopsis:

del session -id <Interceptor log id>

Description: -id  Interceptor log ID

Example:

del session -id 5

__

44 Java API Reference Guide

del system message  Delete the specified system message.

Synopsis:

del system message –id <System message ID>

Description: -id  A valid system message id

Example:

del system message -id 799

__

del task  Delete a task

Synopsis:

del task -id <Task ID>

Description:

Deletes a task, whether it has run or not. -id -- A task ID

Example:

del task -id 4321

__

del user  Delete a user from NCM.

Synopsis:

del user -u <User name>

Description: -u -- The user name to be deleted

Example:

del user -u johnd

__

deploy config  Deploy the config to a device.

Synopsis:

deploy config [-ip <IP address>] [-host <Hostname>] [-fqdn <Fully Qualified Domain
Name>] -id <Config ID> [-start <Task start date>] [-sync] [-option <Deployment option>]

Description:

Deploy the specified config to a specified device either right away, or at some point in
the future. The deploy operation is actually a scheduled task.

• -ip  a.b.c.d where 0 <= a,b,c,d <= 255

• -host  A valid hostname

• -fqdn  A valid Fully Qualified Domain Name

• -id  The ID of the config to deploy to the specified device.

Java API Reference Guide 45

• -start  YYYY:MM:DD:HH:mm. The first date on which the task will run. Do not
use this option with -sync.

• -sync  Indicates that the command should return only after the deploy task is
complete. Do not use this option with -start.

• -option  current or startup_reload, as applicable to the device.

Example:

deploy config -ip 207.99.30.226 -id 1962 -sync

__

diff config  Show the differences between two configs.

Synopsis:

diff config -id1 <Config ID> -id2 <Config ID>

Description:

• -id1  The ID of a config

• -id2  The ID of a config

Example:

diff config -id1 1961 -id2 1989

__

disable device  Mark a device as disabled.

Synopsis:

disable device [-ip <IP address>] [-host <Hostname>] [-fqdn <Fully Qualified Domain
Name>]

Description:

• -ip  a.b.c.d where 0 <= a,b,c,d <= 255

• -host  A valid hostname

• -fqdn  A valid Fully Qualified Domain Name

Example:

disable device -host rtr5.vfm.lab

__

46 Java API Reference Guide

discover driver  Discover a driver for a device.

Synopsis:

discover driver [-ip <IP address>] [-host <Hostname>] [-fqdn <Fully Qualified Domain
Name>]

Description:

Attempts to match a driver to the specified device.

• -ip  a.b.c.d where 0 <= a,b,c,d <= 255: The device for which a driver should be
discovered.

• -host  A valid hostname: The device for which a driver should be discovered.

• -fqdn  A valid Fully Qualified Domain Name: The device for which a driver
should be discovered.

Example:

discover driver -ip 207.99.30.226

__

discover drivers  Discover drivers for all devices.

Synopsis:

discover drivers

Description:

Attempts to match a driver to each device that NCM recognizes.

Example:

discover drivers
__

enable device  Mark a device as enabled.

Synopsis:

enable device [-ip <IP address>] [-host <Hostname>] [-fqdn <Fully Qualified Domain
Name>]

Description:

• -ip  a.b.c.d where 0 <= a,b,c,d <= 255

• -host  A valid hostname

• -fqdn  A valid Fully Qualified Domain Name

Example:

enable device -ip 207.99.30.226

__

Java API Reference Guide 47

exit  Exit NCM.

Synopsis:

exit

Description: Exit

Example:

exit

__

get snapshot  Get the config from a device.

Synopsis:

get snapshot [-ip <IP address>] [-group <Groupname>] [-host <Hostname>] [-fqdn <Fully
Qualified Domain Name>] [-rep <Task repeat period>] [-sync] [-start <Task start date>] [-
comment <Snapshop comment>]

Description:

Get the config from a specified device either right away, or at some point in the future.
The retrieval operation is actually a scheduled task. Using this command, you can set
the task to repeat periodically.

• -ip  a.b.c.d where 0 <= a,b,c,d <= 255

• -group  A valid group name. Do not use this option with -ip (exactly one of -ip
or -group must be specified).

• -host  A valid hostname

• -fqdn  A valid Fully Qualified Domain Name

• -rep  (#min | #:# | #days | #weeks | #months) where # is a positive integer. #:#
is hours:minutes--the two integers do not have to be the same. Do not use this
option with -sync.

• -sync  Indicates the command should return only after the snapshot retrieval
task is complete. Do not use this option with -rep or -start.

• -start  YYYY:MM:DD:HH:mm. The first date on which the task will run.

• -comment  An optional comment about the snapshot.

Example:

get snapshot -ip 207.99.30.226

import  Import device or device password information.

Synopsis:

import -input <Filename> -data <device or auth> [-log <Filename>] [-append <true or
false>] [-discoverafter <true or false>] [-configuresyslog <true or false>] [-filter
<Filename>] [-cleanafter <true or false>] [-deviceorigin <Any String>]

48 Java API Reference Guide

Description:

This command can import device password information contained in appropriately
formatted CSV files. (Please contact Spport for CSV file format specifications.)

• -input  Contains CSV device or device password data.

• -data  Whether the type of information imported is devices or device
authentication.

• -log  Command log file.

• -append  If true, will append imported information to existing information. If
false, will overwrite existing device/auth records. This option is false by default.

• -discoverafter  Discover drivers for imported device? This option is false by
default.

• -configuresyslog  Configure devices to send syslog messages to NCM. Valid
values are true | false

• -filter  An application that reads the input file from stdin, and writes a NCM
compatible CSV file to stdout.

• -cleanafter  If true, then after importing data, a process will run on the server
that will delete old devices. Devices are deleted according to the current
configuration of NCM’ "deletion-on-import" rules, and the argument to the
deviceorigin option. This option is false by default.

• -deviceorigin  A Description: of the source of the data. This is recorded by
NCM, but is not visible via any UI.

Example:

import -input devices.csv -data device -log import.log -append true -cleanafter false -
deviceorigin "Border Routers" -filter prepro.exe
__

list access  List all access records for a device.

Synopsis:

list access [-ip <IP address>] [-host <Hostname>] [-fqdn <Fully Qualified Domain
Name>] [-start <Date>] [-end <Date>]

Description:

• -ip  a.b.c.d where 0 <= a,b,c,d <= 255

• -host  A valid hostname

• -fqdn  A valid Fully Qualified Domain Name

• -start  Display only those access records created on or after the given date.
Values for this option can be in one of the following formats: YYYY-MM-DD
HH:MM:SS (e.g. 2002-09-06 12:30:00YYYY-MM-DD HH:MM
2002/09/06YYYY:MM:DD:HH:MM (e.g. 2002:09:06:12:30), or, one of: now,
today, yesterday, tomorrow; Or, in the format: e.g. 3 days ago is a positive
integer is one of: seconds, minutes, hours, days, weeks, months, years;. is one
of: ago, before, later, after.

Java API Reference Guide 49

• -end  Display only those access records created on or before the given date.
Values for this option have the same format as for the option -start.

Example:

list access -ip 207.99.30.226

__

list access all  List all access records for all devices.

Synopsis:

list access all

Description: list all

Example:

list access all

__

list basicip  List all configs for which the BasicIP model can be shown.

Synopsis:

list basicip [-ip <IP address>] [-host <Hostname>] [-fqdn <Fully Qualified Domain
Name>] [-start <Date>] [-end <Date>]

Description:

• -ip  a.b.c.d where 0 <= a,b,c,d <= 255

• -host  A valid hostname

• -fqdn  A valid Fully Qualified Domain Name

• -start  Display only those configs stored on or after the given date. Values for
this option may be in one of the following formats: YYYY-MM-DD HH:MM:SS
(e.g. 2002-09-06 12:30:00YYYY-MM-DD HH:MM), or, one of: now, today,
yesterday, tomorrow; Or, in the format: e.g. 3 days ago is a positive integer. is
one of: seconds, minutes, hours, days, weeks, months, years;. is one of: ago,
before, later, after.

• -end  Display only those configs stored on or before the given date. Values for
this option have the same format as for the option -start.

Example:

list basicip -ip 207.99.30.226

__

list config  List all configs for the specified device.

Synopsis:

list config [-ip <IP address>] [-host <Hostname>] [-fqdn <Fully Qualified Domain Name>]
[-start <Date>] [-end <Date>]

50 Java API Reference Guide

Description:

• -ip  a.b.c.d where 0 <= a,b,c,d <= 255

• -host  A valid hostname

• -fqdn  A valid Fully Qualified Domain Name

• -start  Display only those configs stored on or after the given date. Values for
this option may be in one of the following formats:YYYY-MM-DD HH:MM:SS (e.g.
2002-09-06 12:30:00YYYY-MM-DD HH:MM), or, one of: now, today, yesterday,
tomorrow; Or, in the format: e.g. 3 days ago is a positive integer. is one of:
seconds, minutes, hours, days, weeks, months, years;. is one of: ago, before,
later, after.

• -end  Display only those configs stored on or before the given date. Values for
this option have the same format as for the option -start.

Example:

list config -ip 207.99.30.226

__

list config all  List all configs for all devices.

Synopsis:

list config all

Description: list config all

Example:

list config all

__

list device  List devices.

Synopsis:

list device [-group <Device group>] [-disabled] [-pollexcluded]

Description:

Lists all devices in the system unless you include one of the options; with -group, the
command lists all devices in the specified group, with -disabled lists unmanaged
devices, with -pollexcluded list devices excluded from polling.

• -group  The name of the device group whose devices are to be listed.

• -disabled  List devices that are unmanaged.

• -pollexcluded  List devices excluded from polling.

Example:

list device

__

Java API Reference Guide 51

list device data  List configuration and diagnostic data records for the specified
device.

Synopsis:

list device data -ip <IP address> [-dataType <Data type>]

Description:

• -ip  a.b.c.d where 0 <= a,b,c,d <= 255

• -dataType  A string describing the type of device data record to list

Example:

list device data -ip 207.99.30.226

__

list deviceinfo  List all configs for which the DeviceInformation model can be shown.

Synopsis:

list deviceinfo [-ip <IP address>] [-host <Hostname>] [-fqdn <Fully Qualified Domain
Name>]

Description:

• -ip  a.b.c.d where 0 <= a,b,c,d <= 255

• -host  A valid hostname

• -fqdn  A valid Fully Qualified Domain Name

Example:

list deviceinfo -ip 207.99.30.226

__

list diagnostic  List all configs for which the given diagnostic may be shown.

Synopsis:

list diagnostic -diagnostic <Diagnostic Name> [-ip <IP address>] [-host <Hostname>] [-
fqdn <Fully Qualified Domain Name>] [-start <Date>] [-end <Date>]

Description:

• -diagnostic  A diagnostic name

• -ip  a.b.c.d where 0 <= a,b,c,d <= 255

• -host  A valid hostname

• -fqdn  A valid Fully Qualified Domain Name

• start  Display only those diagnostics stored on or after the given date. Values
for this option may be in one of the following formats: YYYY-MM-DD HH:MM:SS
(e.g. 2002-09-06 12:30:00YYYY-MM-DD HH:MM), or, one of: now, today,
yesterday, tomorrow; Or, in the format: e.g. 3 days ago is a positive integer. is
one of: seconds, minutes, hours, days, weeks, months, years;.is one of: ago,
before, later, after.

52 Java API Reference Guide

• -end  Display only those diagnostics created on or before the given date.
Values for this option have the same format as for the option -start.

Example:

list diagnostic -ip 207.99.30.226 -diagnostic "vlan report"

__

list drivers  List all drivers associated with a device.

Synopsis:

list drivers [-ip <IP address>] [-host <Hostname>] [-fqdn <Fully Qualified Domain
Name>]

Description:

• -ip  a.b.c.d where 0 <= a,b,c,d <= 255

• -host  A valid hostname

• -fqdn  A valid Fully Qualified Domain Name

Example:

list drivers -ip 207.99.30.226

__

list events  List all events.

Synopsis:

list event [-ip <IP address>] [-host <Hostname>] [-fqdn <Fully Qualified Domain Name>]
[-type <type>] [-start <Date>] [-end <Date>]

Description:

• -ip  a.b.c.d where 0 <= a,b,c,d <= 255 (Display only those events associated
with the specified device.)

• -host  A valid hostname (Display only those events associated with the
specified device.)

• -fqdn  A valid Fully Qualified Domain Name (Display only those events
associated with the specified device.)

• -type <type>  A valid event type. Refer to the User Guide for Network
Compliance Manager 1.2.1 for event descriptions.

• -start <Date>  List events after this date. Values for this option may be in one
of the following formats:
YYYY-MM-DD HH:MM:SS e.g. 2002-09-06 12:30:00
YYYY-MM-DD HH:MM e.g. 2002-09-06 12:30
YYYY-MM-DD e.g. 2002-09-06
YYYY/MM/DD e.g. 2002/09/06
YYYY:MM:DD:HH:MM e.g. 2002:09:06:12:30
Or, one of: now, today, yesterday, tomorrow
Or, in the format: <number> <time unit> <designator> e.g. 3 days ago
<number> is a positive integer.

Java API Reference Guide 53

<time unit> is one of: seconds, minutes, hours, days, weeks, months, years;.
<designator> is one of: ago, before, later, after.

• -end <Date>  List events before this date.

Examples:

list event -ip 207.99.130.226

list event -start yesterday

list device -group "border routers"

__

list groups  List groups of the specified type for a specific device or all groups in the
system.

Synopsis:

list groups -type <Type> [-ip <IP address>] [-host <Hostname>] [-fqdn <Fully Qualified
Domain Name>] [-parent <Parent Group Name>]

Description:

• -type  The type of the groups to be listed. "device" is currently the only valid
argument to this option.

• -ip  List all device groups containing the device with this IP address

• -host  List all device groups containing the device with this hostname

• -fqdn  List all device groups containing the device with this Fully Qualified
Domain Name

• -parent  List all device groups that are children of the indicated parent group

Example:

list groups -type device

__

54 Java API Reference Guide

list icmp  List all configs for which the ICMPTest model may be shown.

Synopsis:

list icmp [-ip <IP address>] [-host <Hostname>] [-fqdn <Fully Qualified Domain Name>]
[-start <Date>] [-end <Date>]

Description:

• -ip  a.b.c.d where 0 <= a,b,c,d <= 255

• -host  A valid hostname

• -fqdn  A valid Fully Qualified Domain Name

• -start  Display only those ICMPTest models stored on or after the given date.
Values for this option may be in one of the following formats:YYYY-MM-DD
HH:MM:SS e.g. 2002-09-06 12:30:00YYYY-MM-DD HH:MM; Or, one of: now,
today, yesterday, tomorrow; Or, in the format: e.g. 3 days ago is a positive
integer. is one of: seconds, minutes, hours, days, weeks, months, years;. is one
of: ago, before, later, after.

• -end  Display only those ICMPTest models stored on or before the given date.
Values for this option have the same format as for the option -start.

Example:

list icmp -ip 207.99.30.226

__

list int  List all configs for which the ShowInterfaces model may be shown.

Synopsis:

list int [-ip <IP address>] [-host <Hostname>] [-fqdn <Fully Qualified Domain Name>] [-
start <Date>] [-end <Date>]

Description:

• -ip  a.b.c.d where 0 <= a,b,c,d <= 255

• -host  A valid hostname

• -fqdn  A valid Fully Qualified Domain Name

• -start  Display only those ShowInterfaces models stored on or after the given
date. Values for this option may be in one of the following formats: YYYY-MM-DD
HH:MM:SS (e.g. 2002-09-06 12:30:00YYYY-MM-DD HH:MM), or, one of: now,
today, yesterday, tomorrow; Or, in the format: e.g. 3 days ago is a positive
integer. is one of: seconds, minutes, hours, days, weeks, months, years;. is one
of: ago, before, later, after.

• -end  Display only those ShowInterfaces models stored on or before the given
date. Values for this option have the same format as for the option -start.

Example:

list int -ip 207.99.30.226

__

Java API Reference Guide 55

list ip  List ip.

Synopsis:

list ip -deviceip <Device IP address>

Description:

Lists ip addresses for specific device: -deviceip  The device's ip address a.b.c.d where
0 <= a,b,c,d <= 255

Example:

list ip -deviceip 207.99.30.226

__

list ip all  List all secondary ip.

Synopsis:

list ip all

Description: List all secondary ip addresses in the system.

Example:

list ip all

__

list module  List modules (or blades) in the system.

Synopsis:

list module [-model <Model Number>] [-type <Module Description:>] [-firmware
<Firmware Version>] [-hardware <Hardware Revision>] [-memory <Memory>] [-
comment <Comment>] [-ip <IP address>] [-host <Hostname>] [-fqdn <Fully Qualified
Domain Name>] [-group <Device Group Name>]

Description:

• -model  List only device modules matching this model number

• -type  List only device modules matching this module Description:

• -firmware  List only device modules matching this firmware version

• -hardware  List only device modules matching this hardware revision

• -memory  List only device modules with this amount of memory

• -comment  List only device modules matching this comment

• -ip  List only device modules on the device with this IP address

• -host  List only device modules on the device with this hostname

• -fqdn  List only device modules on the device with this Fully Qualified Domain
Name

• -group  List only device modules on all devices with this device group name

56 Java API Reference Guide

Example:

list module -host border7.red

__

list ospfneighbor  List all configs for which the ShowOSPFNeighbors model may be
shown.

Synopsis:

list ospfneighbor [-ip <IP address>] [-host <Hostname>] [-fqdn <Fully Qualified Domain
Name>] [-start <Date>] [-end <Date>]

Description:

• -ip  a.b.c.d where 0 <= a,b,c,d <= 255

• -host  A valid hostname

• -fqdn  A valid Fully Qualified Domain Name

• -start  Display only those ShowOSPFNeighbors models stored on or after the
given date. Values for this option may be in one of the following formats:YYYY-
MM-DD HH:MM:SS e.g. 2002-09-06 12:30:00YYYY-MM-DD HH:MM; Or, one of:
now, today, yesterday, tomorrow; Or, in the format: e.g. 3 days ago is a positive
integer. is one of: seconds, minutes, hours, days, weeks, months, years;. is one
of: ago, before, later, after.

• -end  Display only those ShowOSPFNeighbors models stored on or before the
given date. Values for this option have the same format as for the option -start.

Example:

list ospfneighbor -ip 207.99.30.226

__

list port  List ports (or interfaces) for a specific device in the system.

Synopsis:

list port [-ip <IP address>] [-host <Hostname>] [-fqdn <Fully Qualified Domain Name>]

Description:

• -ip  List all device ports on the device with this IP address

• -host  List all device ports on the device with this hostname

• -fqdn  List all device ports on the device with this Fully Qualified Domain Name

Example:

list port -host border7.red
__

Java API Reference Guide 57

list routing  List all routing tables for a device.

Synopsis:

list routing [-ip <IP address>] [-host <Hostname>] [-fqdn <Fully Qualified Domain
Name>] [-start <Date>] [-end <Date>]

Description:

• -ip  a.b.c.d where 0 <= a,b,c,d <= 255

• -host  A valid hostname

• -fqdn  A valid Fully Qualified Domain Name

• -start  Display only those routing tables stored on or after the given date.
Values for this option may be in one of the following formats: YYYY-MM-DD
HH:MM:SS (e.g. 2002-09-06 12:30:00YYYY-MM-DD HH:MM e.g. 2002-09-06
12:30YYYY-MM-DD; Or, one of: now, today, yesterday, tomorrow; Or, in the
format: e.g. 3 days ago is a positive integer. is one of: seconds, minutes, hours,
days, weeks, months, years;. is one of: ago, before, later, after.

• -end  Display only those routing tables stored on or before the given date.
Values for this option have the same format as for the option -start.

Example:

list routing -ip 207.99.30.226

__

list script . List command scripts, advanced scripts, and/or diagnostics.

Synopsis:

list script [-type <Type>] [-scripttype <Script Type>]

Description:

• -type <Type>  Type of the desired script or diagnostic - may be command,
advanced or diagnostic -scripttype <Script Type>

• User defined script type (i.e. subcategory)  applies only to command scripts
and advanced scripts

Examples:

list script
list script -type diagnostic
list script -type advanced -scripttype "Core Provisioning Scripts"

__

58 Java API Reference Guide

list session  List all interceptor log records for a device.

Synopsis:

list session [-ip <IP address>] [-host <Hostname>] [-fqdn <Fully Qualified Domain
Name>] [-start <Date>] [-end <Date>]

Description:

• -ip  a.b.c.d where 0 <= a,b,c,d <= 255

• -host  A valid hostname

• -fqdn  A valid Fully Qualified Domain Name

• -start  Display only those interceptor log records created on or after the given
date. Values for this option may be in one of the following formats: YYYY-MM-DD
HH:MM:SS (e.g. 2002-09-06 12:30:00YYYY-MM-DD HH:MM), or, one of: now,
today, yesterday, tomorrow; Or, in the format: e.g. 3 days ago is a positive
integer. is one of: seconds, minutes, hours, days, weeks, months, years;.is one
of: ago, before, later, after.

• -end  Display only those interceptor log records created on or before the given
date. Values for this option have the same format as for the option -start.

Example:

list session -ip 207.99.30.226

__

list system message  List system messages.

Synopsis:

list system message [-ip <IP address>] [-host <Hostname>] [-fqdn <Fully Qualified
Domain Name>] [-start <Date>] [-end <Date>]

Description:

Lists all system messages unless you include one of the options. Including one of the
device options displays all system messages associated with the specified device.

• -ip  a.b.c.d where 0 <= a,b,c,d <= 255

• -host  A valid hostname

• -fqdn  A valid Fully Qualified Domain Name

• -start  Display only those system messages created on or after the given date.
Values for this option may be in one of the following formats: YYYY-MM-DD
HH:MM:SS (e.g. 2002-09-06 12:30:00YYYY-MM-DD HH:MM e.g. 2002-09-06
12:30YYYY-MM-DD; Or, one of: now, today, yesterday, tomorrow; Or, in the
format: e.g. 3 days ago is a positive integer. is one of: seconds, minutes, hours,
days, weeks, months, years;. is one of: ago, before, later, after.

• -end  Display only those system messages created on or before the given
date. Values for this option have the same format as for the option -start.

Java API Reference Guide 59

Example:

list system message
__

list task  Display a list of tasks.

Synopsis:

list task [-ip <IP address>] [-host <Hostname>] [-fqdn <Fully Qualified Domain Name>] [-
start <Task start date>] [-end <Task end date>] [-parentid <Parent task ID>] [-status
<Task status>] [-id <Task ID>]

Description:

This command behaves differently depending on the options you give it. The command
returns a list of all tasks. Each option filters the returned list of tasks, causing it to return
a subset of the total list.

• -ip  a.b.c.d where 0 <= a,b,c,d <= 255: Display only those tasks associated
with the specified device.

• -host  A valid hostname: Display only those tasks associated with the specified
device.

• -fqdn  A valid Fully Qualified Domain Name: Display only those tasks
associated with the specified device.

• -start  YYYY:MM:DD:HH:mm: Display only those tasks whose schedule date
falls on or after the given date.

• -end  YYYY:MM:DD:HH:mm: Display only those tasks whose schedule date
falls on or before the given date

• -parentid  a task ID: Display only those tasks whose parent is the task
specified by the given Task ID.

• -status  (pending | succeeded | failed | running | paused | starting | waiting |
synchronous | skipped | completed): Display only those tasks with the specified
status.

• -id  a task ID: Display the task with the given task ID.

Example:

list task -parentid 78
__

list task all  List all tasks.

Synopsis:

list task all

Description:

Equivalent to "list task".

Example:

list task all

__

60 Java API Reference Guide

list user  List all users.

Synopsis:

list user

Description:

Example:

list user

__

mod advanced script  Modify an existing advanced script.

Synopsis:

mod advanced script [-id <Script ID>] [-name <Script Name>] [-newname <New Name>]
[-description <New Description>] [-scripttype <New Script Type>]
[-family <New Device Family>] [-language <New Script Language>]
[-parameters <New Parameters>] [-script <New Script Text>]

Description:

Modify the indicated advanced script. The desired script can be specified by ID or name.
If more than one name match occurs, then an error will be reported and you must
specify the unique script desired by ID.

• -id <Script ID>  ID of the advanced script to edit.

• -name <Script Name>  Name of the advanced script to edit.

• newname <New Name>  New name for the script being modified.

• description <New Description>  New description for the script being modified.

• scripttype <New Script Type>  New script type (i.e. user defined subcategory).

• family <New Device Family>  New device family for the script being modified.

• language <New Script Language  New language for the script being modified -
must be a supported language (such as Expect or Perl).

• parameters <New Paramerters>  New command line parameters for the script
being modified.

• script <New Script Text>  New script text.

Examples:

mod advanced script -id 22 -newname "Set Duplex" -description "Sets the interface
duplex configuration" -scripttype "Interface Management Scripts"

mod advanced script -name "Extended Ping" -family "Cisco IOS" -language "Expect-
parameters "-l /usr/etc/log.txt" -script "send(\"extended ping $Target_IP$\")"

__

Java API Reference Guide 61

mod authentication  Modify device password information.

Synopsis:

mod authentication -loc <Location> [-ip <IP address>] [-host <Hostname>] [-fqdn <Fully
Qualified Domain Name>] [-snmpro <Read only community string(s)>] [-snmprw <Read
write community string(s)>] [-user <Username>] [-passwd <Password>] [-enableuser
<Enable username>] [-enablepasswd <Enable password>] [-connectionmethods
<Connection methods>] [-accessvariables <Access variables>] [-start <Task start date>]
[-appendsnmpro] [-appendsnmprw] [-sync] [-group <Group name>] [-rulename
<Password Rule name>]

Description:

This command can modify passwords on a specific device, across all devices in a device
group, or update what NCM knows of the device's password information. When using
this command to modify passwords on a device or device group, the modification
operation is a scheduled task.

• -loc  The location to which password information should be written. Valid
values for this argument are "db", "device", and "group". "db" tells the command
that password information should be changed only in NCM’ database. "device"
tells the command that the password changes should be made on the device as
well and "group" performs the same function as "device" but across all devices in
the group.

• -ip  a.b.c.d where 0 <= a,b,c,d <= 255: An existing device to which this
password information should apply.

• -host  A valid hostname: An existing device to which this password information
should apply.

• -fqdn  A valid Fully Qualified Domain Name: An existing device to which this
password information should apply.

• -snmpro  When used in conjunction with -loc db, this argument is taken as a
single community string understood by NCM as the read only community string
for the device or network. When used in conjunction with -loc device, this
argument is taken as a comma-seperated list of read only community strings to
be, either set on the device, or appended to an existing list of read only
community strings (depends on whether or not the -appendsnmpro flag was
supplied.)

• -snmprw  When used in conjunction with -loc db, this argument is taken as a
single community string understood by NCM as the read write community string
for the device or network. When used in conjunction with -loc device, this
argument is taken as a comma-seperated list of read write community strings to
be, either set on the device, or appended to an existing list of read write
community strings (depends on whether or not the -appendsnmprw flag was
supplied.)

• -user  Username.

• -passwd  Password.

• -enableuser  ADDITIONAL username to get to "enable" mode.

62 Java API Reference Guide

• -enablepasswd  ADDITIONAL password to get to "enable" mode.

• -connectionmethods  The methods used by NCM to connect to devices. Can
be telnet, serial_direct, or SSH.

• -accessvariables  To override variables in the script, such as prompts.

• -start  YYYY:MM:DD:HH:mm. The first date on which the task will run. Use this
option only if the argument to the -loc flag is "device".

• -appendsnmpro  Supply this option if read only community strings should be
appended to any existing on the device. Use this option only if the argument to
the -loc flag is "device".

• -appendsnmprw  Supply this option if read write community strings should be
appended to any existing on the device. Use this option only if the argument to
the -loc flag is "device".

• -sync  Indicates that the command should return only after the password
change task is complete. Do not use this option with -start.

• -group  The group name for performing this command across all devices in a
group.

• -rulename  The password rule name to apply the access variables to.

Example:

mod authentication -loc db -ip 207.99.30.226 -passwd fish -snmpro public -
enablepasswd 31337
__

mod diagnostic  Modify an existing custom diagnostic script.

Synopsis:

mod diagnostic [-id <Diagnostic ID>] [-name <Diagnostic Name>] [-newname
<NewName>] [-description <New Description>] [-mode <New Mode>] [-driver <New
Driver List>] [-script <New Script Text>]

Description:

Modify the indicated diagnostic script. The desired diagnostic can be specified by ID or
name. If more than one name match occurs, an error is reported and you must specify
the unique diagnostic desired by ID.

• -id <Diagnostic ID>  ID of the diagnostic to edit.

• -name <Diagnostic Name>  Name of the diagnostic to edit.

• -newname <New Name>  New name for the diagnostic being modified.

• -description <New Description>  New description for the diagnostic being
modified.

• -mode <New Mode>  New command script mode.

• -driver <New Driver List>  New list of applicable drivers - provided as a comma
separated list of internal driver names.

• -script <New Script Text>  New diagnostic script text.

Java API Reference Guide 63

Examples:

mod diagnostic -id 22 -newname "Show IP CEF" -description "Gather IP CEF
information"

mod diagnostic -name "Extended Ping To Core" -mode "Cisco IOS enable" –driver
"CiscoIOSGeneric,CiscoIOSSwitch" -script "extended ping 10.1.34.115"

mod command script  Modify an existing command script.

Synopsis:

mod command script [-id <Script ID>] [-name <Script Name>] [-newname <New Name>]

[-description <New Description>] [-scripttype <New Script Type>] [-mode <New Mode>]
[-driver <New Driver List>] [-script <New Script Text>]

Description:

Modify the indicated command script. The desired script can be specified by ID or name.
If more than one name match occurs, then an error will be reported and you must
specify the unique script desired by ID.

• -id <Script ID>  ID of the command script to edit

• -name <Script Name>  Name of the command script to edit

• -newname <New Name>  New name for the script being modified

• -description <New Description  New description for the script being modified

• -scripttype <New Script Type>  New script type (i.e. user defined subcategory)

• -mode <New Mode>  New command script mode

• -driver <New Driver List>  New list of applicable drivers - provided as a
comma separated list of internal driver names

• -script <New Script Text>  New script text

Examples:

mod command script -id 22 -newname "Set Duplex" -description "Sets the interface
duplex configuration" -scripttype "Interface Management Scripts"

mod command script -name "Extended Ping" -mode "Cisco IOS enable" –driver
"CiscoIOSGeneric,CiscoIOSSwitch" -script "extended ping $Target_IP$"

__

64 Java API Reference Guide

mod device  Modify the properties of a device.

Synopsis:

mod device [-ip <IP address>] [-host <Hostname>] [-fqdn <Fully Qualified Domain
Name>] [-hostname <New Hostname>] [-comment <Comment>] [-Description: <Device
name>] [-model <Device model>] [-vendor <Device vendor>] [-domain <Domain name>]
[-serial <Serial number>] [-asset <Asset tag>] [-location <Location>] [-unmanaged
<Unmanaged>] [-nopoll <Do not poll>] [-newIP <New IP address>] [-consoleip <Console
IP address, if using console server>] [-consoleport <Console Port>] [-tftpserverip <TFTP
server IP address, if using NAT>] [-natip <NAT IP address>] [-customname
<Customname>] [-customvalue <Customvalue>] [-useconsoleserver <true or false>] [-
accessmethods <Comma-separated list of access methods>]

Description:

• -ip  a.b.c.d where 0 <= a,b,c,d <= 255

• -host  A valid hostname

• -fqdn  A valid Fully Qualified Domain Name

• -hostname  The device's new host name

• -comment  Additional information regarding the device.

• -Description:  The descriptive name of the device (informational only).

• -model  The device's model (such as 2620).

• -vendor  The device's vendor (such as Cisco).

• -domain  A fully qualified domain name (such as www.google.com).

• -serial  The device's serial number.

• -asset  The device's asset tag.

• -location  The device's location.

• -unmanaged  0: Mark this device as managed by NCM. 1: Mark this device to
be unmanaged by NCM.

• -nopoll  0: Mark this device to be polled for changes. 1: Mark this device as not
to be polled for changes.

• -newIP  a.b.c.d where 0 <= a,b,c,d <= 255; the new IP address of the device.

• -consoleip  a.b.c.d where 0 <= a,b,c,d <= 255

• -consoleport  The port number

• -tftpserverip  a.b.c.d where 0 <= a,b,c,d <= 255

• -natip  a.b.c.d where 0 <= a,b,c,d <= 255

• -customname  The custom field name

• -customvalue  The custom field value

• -useconsoleserver  True if the device uses a console server. False if the
device does not.

Java API Reference Guide 65

• -accessmethods  A comma-separated list of access methods, or "none". The
set of access methods: {telnet, ssh, SCP, FTP, TFTP, SNMP}.

Example:

mod device -ip 207.99.30.226 -newIP 216.148.237.146
__

mod group  Modify a group.

Synopsis:

mod group -type <Type> [-name <Name>] [-newname <New name>] [-comment
<Comment>] [-customname <Customname>] [-customvalue <Customvalue>]

Description:

Modify the comments associated with and/or the name of a group.

• -type  The type of the group. "device" is currently the only valid argument to
this option.

• -name  The name of the group to be modified.

• -newname  The new name for the modified group. Do not use this option
unless you also use -name.

• -comment  Additional information regarding the group.

• -customname  The custom field name

• -customvalue  The custom field value

Example:

mod group -name "mystery routers" -type device -comment "removing these devices is a
bad idea, but we don't really know what purpose they server."
__

mod ip  Modify the properties of a ip.

Synopsis:

mod ip -deviceip <Device IP address> -ipvalue <Value> [-comment <Comment>] [-
usetoaccess <Use to Access Device>]

Description:

• -deviceip  The device's ip address a.b.c.d where 0 <= a,b,c,d <= 255

• -ipvalue  The ip value a.b.c.d where 0 <= a,b,c,d <= 255

• -comment  Additional information regarding the device.

• -usetoaccess  Use this IP Value to access its device, 0=yes, 1= no, default=no

Example:

mod ip -deviceip 207.99.30.226 -ipvalue 207.99.23.23 -comment "my own ip"
__

66 Java API Reference Guide

mod port  Modify a port's properties.

Synopsis:

mod port -id <Port ID> [-comment <Comment>] [-customname <Customname>] [-
customvalue <Customvalue>]

Description:

• -id  The ID of a port

• -comment  Additional information about the port.

• -customname  The custom field name

• -customvalue  The custom field value

Example:

mod port -id 527 -comment "Internal Use Only"

__

mod task  Modify a scheduled task.

Synopsis:

mod task -id <Task ID> [-comment <Comment>] [-retryInterval <Retry interval>] [-
expensive] [-notexpensive] [-days <Days>] [-retryCount <Retry count>] [-repeatType
<Repeat type>] [-duration <Duration>] [-start <Start>] [-repeatInterval <Repeat interval>]
[-approve <Approval comment>] [-reject <Reason the task is not approved>] [-override
<Reason for overriding approval process>]

Description:

• -id  The task ID of the task to modify.

• -comment  Additional information about the task.

• -retryInterval  The number of seconds between retries.

• -expensive  Mark the task as expensive. Do not use this option with -
notexpensive.

• -notexpensive  Mark the task as not expensive. Do not use this option with -
expensive.

• -days  This argument differs depending on the task. For weekly tasks, -days
should be a comma-separated list of weekdays. Each item in the list is a day of
the week upon which the task should be run. Valid weekdays are: sun, mon, tue,
wed, thur, fri, sat .For monthly tasks, -days should be a single integer between 1
and 31, corresponding to the day of the month upon which the task should be
run.

• -retryCount  The number of times to retry the task if it fails.

• -repeatType  The metric by which a task repeats. Valid values are 1: once, 2:
periodically, 3: daily, 4: weekly, 5: monthly. If you modify this value, then modify -
repeatInterval or -days accordingly.

• -duration  How many seconds the task can run

Java API Reference Guide 67

• -start  YYYY:MM:DD:HH:mm. The first date the task will run.

• -repeatInterval  This option differs depending on the task.For Periodic tasks,
this is the period in minutes.For Monthly tasks, each bit of the integer (except the
last) represents a day, but we recommend using the -days option to modify the
days on which a monthly task runs.This option is invalid with all other tasks.

• -approve  Approve the task

• -reject  Reject the task

• -override  Override the approval requirement

Example:

mod task -id 7097 -repeatType 4 -days mon,wed,thur
__

mod unmanaged device  Modify the properties of an unmanaged device.

Synopsis:

mod unmanaged device -ip <IP address> -comment <Comment>

Description:

• -ip  a.b.c.d where 0 <= a,b,c,d <= 255

• -comment  Additional information regarding the device.

Example:

mod unmanaged device -ip 207.99.30.226 -comment "no need"

__

mod user  Modify a user's properties.

Synopsis:

mod user -u <Username> [-p <Password>] [-fn <First name>] [-ln <Last name>] [-email
<Email address>] [-priv <User Privilege>] [-newusername <Username>] [-aaausername
<Username>] [-aaapassword <AAA Password>] [-useaaaloginforproxy <Use AAA
Logins for Proxy>] [-customname <Customname>] [-customvalue <Customvalue>]

Description:

• -u  Username

• -p  Password

• -fn  First name

• -ln  Last name

• -email  Email address

• -priv  User Privilege (1=Limited Access,2=Full Access,3=Power User,4=Admin)

• -newusername  New username for this user.

• -aaausername  AAA username for this user.

68 Java API Reference Guide

• -aaapassword  AAA password for this user.

• -useaaaloginforproxy  Whether to user AAA logins for the Proxy Interface for
this user (0=No,1=Yes).

• -customname  The custom field name

• -customvalue  The custom field value

Example:

mod user -u johnd -p new -fn Johnathan -email jdoe@somewhere.nu
__

passwd  Change password.

Synopsis:

passwd -oldpwd <your old password> -newpwd <your new password>

Description:

Causes the current user's password to be changed.

• -oldpwd  youroldpassword

• -newpwd  yournewpassword

Example:

passwd -oldpwd youroldpassword -newpwd yournewpwd

__

pause polling  Stop polling.

Synopsis:

pause polling

Description:

Example:

pause polling

__

ping  Run a ping command on a device.

Synopsis:

ping -source <IP address | Hostname | Fully Qualified Domain Name> -sourcegroup
<Groupname> -dest <List of IP addresses> -rep <Task repeat period> -async -start
<task start date>

Java API Reference Guide 69

Description:

Causes a series of ping commands to be exectued on a device. One ping command is
executed for each target host specified. This series of commands may by run on the
device immediately, or scheduled to run sometime in the future. Via this command, the
task scheduled can be set to repeat periodically. Note that if not scheduled as a task,
this command may take some time to complete.

• -source  Can be an IP address (a.b.c.d where 0 <= a,b,c,d <= 255), or a valid
hostname, or a valid Fully Qualified Domain Name.

• -sourcegroup  A valid group name. Exactly one of -source or -sourcegroup
must be specified.

• -dest  A comma seperated list of devices. Devices may be specified in any way
that is understood by the ping program on the device specified by the option "-
source".

• -rep  (#min | #:# | #days | #weeks | #months) where # is a positive integer. #:#
is hours:minutes, the two integers don't have to be the same. This option should
not be used unless -async is also supplied.

• -async  Indicates that the ping operation should be scheduled on the system
as a task. The start time for the task will be immediatly unless an alternate start
data is provided by means of the -start option.

• -start  YYYY:MM:DD:HH:mm. The date on which the task will first be run. This
option should not be used unless -async is also supplied.

Example:

ping -source 207.99.30.226 -dest 209.67.27.248
__

quit  Exit NCM.

Synopsis:

quit

Description:

Example:

quit

__

reload server options  Reload server options.

Synopsis:

reload server options

Description:

Causes the server to reload config variables from all config files.

Example:

reload server options

__

70 Java API Reference Guide

resume polling  Resume polling.

Synopsis:

resume polling

Description:

Example:

resume polling

__

run advanced script  Run an exsiting advanced script on a device or group of
devices.

Synopsis:

run advanced script [-ip <IP address>] [-host <Hostname>] [-fqdn <Fully Qualified
Domain Name>] [-group <Group Name>] -mode <Command Script Mode> -script
<Command Script> [-rep <Task repeat period>] [-start <Task start date>] [-sync] [-
comment <Run script comment>]

Description:

Runs an existing advanced script, specified by name, against a device or group of
devices. The proper variant of the script will be applied to each device. If no variant of
the script supports a given device, that device will be skipped. The script is run as a
NCM task.

• -ip  a.b.c.d where 0 <= a,b,c,d <= 255

• -host  A valid hostname

• -fqdn  A valid Fully Qualified Domain Name

• -group  A name of a device group (mutually exclusive with -ip, -host, or -fqdn)

• -mode  A command script mode to run the script in.

• -variables <Variable List>  A list of variables to be replaced in the script -
provided as a list of name=value pairs, separated by commas. Values can be
surrounded in single-quotes ('). Within a quoted value, a single-quote can be
embedded with two single-quote characters. (For example:
"variable1=value1,varable2='this is ''value 2'’’.)

• -rep  (#min | #:# | #days | #weeks | #months) where # is a positive integer. #:#
is hours:minutes--the two integers do not have to be the same. Do not use this
option with -sync.

• -start  YYYY:MM:DD:HH:mm. The first date on which the task will run. Do not
use this option with -sync.

• -sync  Indicates that the command should return only after the deploy task is
complete. Do not use this option with -start.

• -comment <Snapshot comment>  An optional comment about the snapshot.

Java API Reference Guide 71

Examples:

run advanced script -ip 207.99.30.226 -name "Extended Ping" –variables
"Target_IP=10.121.53.7" -start 2004:02:29:23:59 -rep 2days –comment "running
extended ping"

run advanced script -group mygroup -name "Set Interface Description"-
variables="interface=Ethernet1,description='provider ''MCI'',link id T207'" -linebyline -
sync

__
run diagnostic  Run a diagnostic on a device.

Synopsis:

run diagnostic [-ip <IP address>] [-host <Hostname>] [-fqdn <Fully Qualified Domain
Name>] [-group <Group Name>] -diagnostic <Diagnostic Name> [-rep <Task repeat
period>] [-start <Task start date>] [-sync] [-comment <Run script comment>]

Description:

Run the specified diagnostic on a specified device either right away, or at some point in
the future. The run diagnostic operation is actually a scheduled task.

• -ip  a.b.c.d where 0 <= a,b,c,d <= 255

• -host  A valid hostname

• -fqdn  A valid Fully Qualified Domain Name

• -group  A name of a device group (mutually exclusive with -ip, -host, or -fqdn)

• -diagnostic  A diagnostic to run. Built-in diagnostics are 'ONA Routing Table',
'ONA Interfaces' and 'ONA OSPF Neighbors'.

• -rep  (#min | #:# | #days | #weeks | #months) where # is a positive integer. #:#
is hours:minutes--the two integers do not have to be the same. Do not use this
option with -sync.

• -start  YYYY:MM:DD:HH:mm. The first date on which the task will run. Do not
use this option with -sync.

• -sync  Indicates that the command should return only after the deploy task is
complete. Do not use this option with -start.

• -comment  An optional comment about the diagnostic.

Example:

run diagnostic -ip 207.99.30.226 -diagnostic "vlan report" -sync
__

run command script  Run an command script on a device or group of devices.

Synopsis:

run script [-ip <IP address>] [-host <Hostname>] [-fqdn <Fully Qualified Domain Name>]
[-group <Group Name>] -mode <Command Script Mode> -script <Command Script> [-
rep <Task repeat period>] [-start <Task start date>] [-sync] [-comment <Run script
comment>]

72 Java API Reference Guide

Description:

Runs an existing command script, specified by name, against a device or group of
devices. The proper variant of the script will be applied to each device. If no variant of
the script supports a given device, that device will be skipped. The script is run as a
NCM task.

• -ip  a.b.c.d where 0 <= a,b,c,d <= 255

• -host  A valid hostname

• -fqdn  A valid Fully Qualified Domain Name

• -group  A name of a device group (mutually exclusive with -ip, -host, or -fqdn)

• -mode  A command script mode to run the script in.

• -variables <Variable List>  A list of variables to be replaced in the script -
provided as a list of name=value pairs, separated by commas. Values can be
surrounded in single-quotes ('). Within a quoted value, a single-quote can be
embedded with two single-quote characters. (For example:
"variable1=value1,varable2='this is ''value 2'’’.)

• -linebyline  Indicates that line-by-line deployment is preferred, rather than file-
based deployment.

• -rep  (#min | #:# | #days | #weeks | #months) where # is a positive integer. #:#
is hours:minutes--the two integers do not have to be the same. Do not use this
option with -sync.

• -start  YYYY:MM:DD:HH:mm. The first date on which the task will run. Do not
use this option with -sync.

• -sync  Indicates that the command should return only after the deploy task is
complete. Do not use this option with -start.

• -comment  An optional comment about the script being run.

Examples:

run command script -ip 207.99.30.226 -name "Extended Ping" –variables
"Target_IP=10.121.53.7" -start 2004:02:29:23:59 -rep 2days –comment "running
extended ping"

run command script -group mygroup -name "Set Interface Description"-
variables="interface=Ethernet1,description='provider ''MCI'',link id T207'" -linebyline -
sync

__
run script  Run a command script on a device.

Synopsis:

run script [-ip <IP address>] [-host <Hostname>] [-fqdn <Fully Qualified Domain Name>]
[-group <Group Name>] -mode <Command Script Mode> -script <Command Script> [-
rep <Task repeat period>] [-start <Task start date>] [-sync] [-comment <Run script
comment>]

Java API Reference Guide 73

Description:

Run the specified command script on a specified device either right away, or at some
point in the future. The run script operation is actually a scheduled task.

• -ip  a.b.c.d where 0 <= a,b,c,d <= 255

• -host  A valid hostname

• -fqdn  A valid Fully Qualified Domain Name

• -group  A name of a device group (mutually exclusive with -ip, -host, or -fqdn)

• -mode -- A command script mode to run the script in.

• -script  A script to run, may separate commands with '\n'. Commands that
require multiple entries before returning to the device prompt can separate each
entry with '\\r\\n'.

• -rep  (#min | #:# | #days | #weeks | #months) where # is a positive integer. #:#
is hours:minutes--the two integers do not have to be the same. Do not use this
option with -sync.

• -start  YYYY:MM:DD:HH:mm. The first date on which the task will run. Do not
use this option with -sync.

• -sync  Indicates that the command should return only after the deploy task is
complete. Do not use this option with -start.

• -comment  An optional comment about the script being run.

Example:

run script -ip 207.99.30.226 -mode "Cisco IOS enable" -script "show ver" -sync

__

show access  Display a device access record.

Synopsis:

show access -id <Device access record ID>

Description:

• -id  Specifies a device access record.

Example:

show access -id 510

__

74 Java API Reference Guide

show basicip  Show a BasicIP model.

Synopsis:

show basicip [-ip <IP address>] [-host <Hostname>] [-fqdn <Fully Qualified Domain
Name>] [-id <Config ID>]

Description:

If the -ip flag is given, show the BasicIP model for the most recent config for the
specified device.If the -id flag is given, show the BasicIP model for the specified
config.Include either the -id or -ip option, but not both.

• -ip  a.b.c.d where 0 <= a,b,c,d <= 255

• -host  A valid hostname

• -fqdn  A valid Fully Qualified Domain Name

• -id  A config ID

Example:

show basicip -ip 207.99.30.226

__

show config  Show the contents of a config.

Synopsis:

show config -id <Config ID>

Description:

• -id  The ID of a config

Example:

show config -id 2600

__

show device  Show a device's properties.

Synopsis:

show device [-ip <IP address>] [-host <Hostname>] [-fqdn <Fully Qualified Domain
Name>] [-id <Device ID>]

Description:

• -ip  a.b.c.d where 0 <= a,b,c,d <= 255

• -host  A valid hostname

• -fqdn  A valid Fully Qualified Domain Name

• -id  A device ID

Example:

show device -ip 207.99.30.226
__

Java API Reference Guide 75

show device config Show the config most recently retrieved from the specified
device.

Synopsis:

show device config [-ip <IP address>] [-host <Hostname>] [-fqdn <Fully Qualified
Domain Name>]

Description:

• -ip  a.b.c.d where 0 <= a,b,c,d <= 255

• -host  A valid hostname

• -fqdn  A valid Fully Qualified Domain Name

Example:

show device config -ip 207.99.30.226

__

show device latest diff  Show the difference between two configs most recently
retrieved from the specified device.

Synopsis:

show device latest diff [-ip <IP address>] [-host <Hostname>] [-fqdn <Fully Qualified
Domain Name>]

Description:

• -ip  a.b.c.d where 0 <= a,b,c,d <= 255

• -host  A valid hostname

• -fqdn  A valid Fully Qualified Domain Name

Example:

show device latest diff -ip 207.99.30.226

__

show deviceinfo  Show a DeviceInformation model.

Synopsis:

show deviceinfo [-ip <IP address>] [-host <Hostname>] [-fqdn <Fully Qualified Domain
Name>] [-id <Config ID>]

Description:

If the -ip flag is given, show the DeviceInformation model for the most recent config for
the specified device.If the -id flag is given, show the Device Information model for the
specified config.Include either the -id or -ip option, but not both.

• -ip  a.b.c.d where 0 <= a,b,c,d <= 255

• -host  A valid hostname

• -fqdn  A valid Fully Qualified Domain Name

• -id  A config ID

76 Java API Reference Guide

Example:

show deviceinfo -ip 207.99.30.226
__

show diagnostic  Show a diagnostic's results.

Synopsis:

show diagnostic -id <Config ID>

Description:

• -id  A config ID

Example:

show diagnostic -id 73253

__

show driver Show the driver assigned to a device.

Synopsis:

show driver [-ip <IP address>] [-host <Hostname>] [-fqdn <Fully Qualified Domain
Name>]

Description:

• -ip  a.b.c.d where 0 <= a,b,c,d <= 255

• -host  A valid hostname

• -fqdn  A valid Fully Qualified Domain Name

Example:

show driver -ip 207.99.30.226
__

show group  Show all information for a group.

Synopsis:

show group [-name <Group name>] [-id <Group id>]

Description:

• -name  The group name for whom information will be displayed.

• -id  The group id for whom information will be displayed.

Example:

show group -name johnd
__

Java API Reference Guide 77

show icmp  Show an ICMPTest model.

Synopsis:

show icmp [-ip <IP address>] [-host <Hostname>] [-fqdn <Fully Qualified Domain
Name>] [-id <Config ID>]

Description:

If the -ip flag is given, show the ICMPTest model for the most recent config for the
specified device.If the -id flag is given, show the ICMPTest model for the specified
config.Include exactly one of the -id or -ip option.

• -ip  a.b.c.d where 0 <= a,b,c,d <= 255

• -host  A valid hostname

• -fqdn  A valid Fully Qualified Domain Name

• -id  A config ID

Example:

show icmp -ip 207.99.30.226
__

show int  Show a ShowInterfaces model.

Synopsis:

show int [-ip <IP address>] [-host <Hostname>] [-fqdn <Fully Qualified Domain Name>]
[-id <Config ID>]

Description:

If the -ip flag is given, show the ShowInterfaces model for the most recent config for the
specified device.If the -id flag is given, show the ShowInterfaces model for the specified
config.Include either the -id or -ip option, but not both.

• -ip  a.b.c.d where 0 <= a,b,c,d <= 255

• -host  A valid hostname

• -fqdn  A valid Fully Qualified Domain Name

• -id  A config ID

Example:

show int -ip 207.99.30.226

__

78 Java API Reference Guide

show ip  Show a ip's properties.

Synopsis:

show ip -deviceip <Device IP address> -ipvalue <Value>

Description:

• -deviceip  The device's ip address a.b.c.d where 0 <= a,b,c,d <= 255

• -ipvalue  The ip value a.b.c.d where 0 <= a,b,c,d <= 255

Example:

show ip -deviceip 207.99.30.226 -ipvalue 207.99.23.23

__

show latest access  Show the most recent access record for the specified device.

Synopsis:

show latest access [-ip <IP address>] [-host <Hostname>] [-fqdn <Fully Qualified
Domain Name>]

Description:

• -ip  a.b.c.d where 0 <= a,b,c,d <= 255

• -host  A valid hostname

• -fqdn  A valid Fully Qualified Domain Name

Example:

show latest access -ip 207.99.30.226

__

show module  Show a module's properties.

Synopsis:

show module -id <Module ID>

Description:

• -id  The ID of a module

Example:

show module -id 527

__

Java API Reference Guide 79

show ospfneighbor  Show a ShowOSPFNeighbors model.

Synopsis:

show ospfneighbor [-ip <IP address>] [-host <Hostname>] [-fqdn <Fully Qualified
Domain Name>] [-id <Config ID>]

Description:

If the -ip flag is provided, show the ShowOSPFNeighbors model for the most recent
config for the specified device. If the -id flag is given, show the ShowOSPFNeighbors
model for the specified config.Include either the -id or -ip option, but not both.

• -ip  a.b.c.d where 0 <= a,b,c,d <= 255

• -host  A valid hostname

• -fqdn  A valid Fully Qualified Domain Name

• -id  A config ID

Example:

show ospfneighbor -ip 207.99.30.226
__

show polling status  Show the current status of polling.

Synopsis:

show polling status

Example:

show polling status

__

show port  Show a port's properties.

Synopsis:

show port -id <Port ID>

Description:

• -id  The ID of a port

Example:

show port -id 527

__

80 Java API Reference Guide

show routing  Display a routing table .

Synopsis:

show routing [-ip <IP address>] [-host <Hostname>] [-fqdn <Fully Qualified Domain
Name>] [-id <Routing table ID>]

Description:

If the -ip flag is given, show the most recent routing table captured for the specified
device. If the -id flag is given, show the specified routing table.Include either the -id or -ip
option, but not both.

• -ip  a.b.c.d where 0 <= a,b,c,d <= 255

• -host  A valid hostname

• -fqdn  A valid Fully Qualified Domain Name

• -id  A routing table ID

Example:

show routing -host rtr6.vfm.lab

__

Show Script  Show one command script, advanced script, or diagnostic.

Synopis:

show script [-id <Script / Diagnositc ID>] [-name <Script / Diagnositc Name>] [-type
<Script / Diagnositc Type>]

Description:

Output the indicated command script, advanced script, or diagnostic. The desired script
or diagnostic can be specified by ID or by a combination of name and type. If more than
one name match occurs, an error will be reported. You must specify the unique script by
ID.

• -id <Script / Diagnositc ID>  ID of the desired script or diagnostic.

• -name <Script / Diagnositc Name>  Name of the desired script or diagnostic.

• -type <Script / Diagnositc Type>  Type of the desired script or diagnostic.

Examples:

show script -id 5

show script -name "Edit Port Duplex" -type command

__

Java API Reference Guide 81

show session  Show interceptor log record.

Synopsis:

show session -id <Interceptor log id>

Description:

• -id  Interceptor log ID

Example:

show session -id 5

__

show session commands  List all commands in interceptor log record.

Synopsis:

show session commands -id <Interceptor log id>

Description:

• -id  Interceptor log ID

Example:

show session commands -id 5

__

show snapshot  Show the config most recently retrieved from the specified device.

Synopsis:

show snapshot [-ip <IP address>] [-host <Hostname>] [-fqdn <Fully Qualified Domain
Name>]

Description:

• -ip  a.b.c.d where 0 <= a,b,c,d <= 255

• -host  A valid hostname

• -fqdn  A valid Fully Qualified Domain Name

Example:

show snapshot -ip 207.99.30.226

__

show system message  Display the details of a system message.

Synopsis:

show system message -id <System message ID>

Description: -id  A valid system message id

Example:

show system message -id 27

__

82 Java API Reference Guide

show task  Shows detailed information about a task.

Synopsis:

show task -id <Task ID>

Description: -id  The task ID whose details will be displayed

Example:

show task -id 354

__

show user  Show all information for a user.

Synopsis:

show user [-u <User name>] [-id <User id>]

Description:

• -u  The user name for whom information will be displayed

• -id  The user id for whom information will be displayed

Example:

show user -u johnd

__

ssh  Make an ssh connection to a device .

Synopsis:

ssh [-override]

Description:

Connect to a device through NCM’ Proxy Interface via ssh (bypassing single sign-on). If
you are connected to a device through a console server, you may hit ctrl-\ to return to
the NCM shell after logging out of the device.

• -override -- Force a connection to a device in the event that simultaneous
connection warning or prevention is turned on.

• -Hostname, Fully Qualified Domain Name, or Primary IP Address to use to
lookup the device to connect to. The characters * and ? can be used as
wildcards.

• -Port to use to connect to devices outside of NCM.

Example:

ssh 207.99.30.226

__

Java API Reference Guide 83

synchronize  Synchronize a device's startup and running configs.

Synopsis:

synchronize [-ip <IP address>] [-host <Hostname>] [-fqdn <Fully Qualified Domain
Name>] [-group <Group Name>] [-skipinsync <Skip if Synchronized>] [-rep <Task repeat
period>] [-start <Task start date>] [-sync] [-comment <Task comment>]

Description:

Synchronize a device's startup configuration so it matches its running configuration. The
synchronize operation is actually a scheduled task.

• -ip  a.b.c.d where 0 <= a,b,c,d <= 255

• -host  A valid hostname

• -fqdn  A valid Fully Qualified Domain Name

• -group  A name of a device group (mutually exclusive with -ip, -host, or -fqdn)

• -skipinsync  Indicates that the command should skip any device that NCM
indicates already has matching startup and running configs.

• -rep  (#min | #:# | #days | #weeks | #months) where # is a positive integer. #:#
is hours:minutes--the two integers do not have to be the same. Do not use this
option with -sync.

• -start  YYYY:MM:DD:HH:mm. The first date on which the task will run. Do not
use this option with -sync.

• -sync  Indicates that the command should return only after the synchronize
task is complete. Do not use this option with -start.

• -comment  An optional comment about the synchronize task.

Example:

synchronize -ip 207.99.30.226 -sync
__

telnet  Make a telnet connection to a device.

Synopsis:

telnet [-override]

Description:

Connect to a device through NCM’ Proxy Interface via telnet (bypassing single sign-on).
If you are connected to a device through a console server, you may hit ctrl-\ to return to
the NCM shell after logging out of the device.

• -overrid Force a connection to a device in the event that simultaneous
connection warning or prevention is turned on.

• -Hostname, Fully Qualified Domain Name, or Primary IP Address to use to
lookup the device to connect to. The characters * and ? can be used as
wildcards.

• -Port to use to connect to devices outside of NCM.

84 Java API Reference Guide

Java API Reference Guide 85

Example:

telnet 207.99.30.226
__

traceroute  Run a traceroute command on a device.

Synopsis:

traceroute -source <IP address | Hostname | Fully Qualified Domain Name> -
sourcegroup <Group name> -dest <List of devices> -rep <Task repeat period> -async -
start <task start date>

Description:

Causes a series of traceroute commands to be exectued on a device. One traceroute
command is executed for each target host specified. This series of commands may by
run on the device immediately, or scheduled to run sometime in the future. Via this
command, the task scheduled can be set to repeat periodically. Note that if not
scheduled as a task, this command may take some time to complete.

• -source  Can be an IP address (a.b.c.d where 0 <= a,b,c,d <= 255), or a valid
hostname, or a valid Fully Qualified Domain Name.

• -sourcegroup  A valid group name. Exactly one of -source or -sourcegroup
must be specified.

• -dest  A comma seperated list of devices. Devices may be specified in any way
that is understood by the traceroute program on the device specified by the
option "-source".

• -rep  (#min | #:# | #days | #weeks | #months) where # is a positive integer. #:#
is hours:minutes, the two integers don't have to be the same. This option should
not be used unless -async is also supplied.

• -async  Indicates that the traceroute operation should be scheduled on the
system as a task. The start time for the task will be immediatly unless an
alternate start data is provided by means of the -start option.

• -start  YYYY:MM:DD:HH:mm. The date on which the task will first be run. This
option should not be used unless -async is also supplied.

Example:

traceroute -source 207.99.30.226 -dest 209.67.27.248

__

version  List NCM version.

Synopsis:

version

Description:

Example:

version

	Getting Started
	Intended Audience
	Document Conventions

	Requirements
	NCM
	License
	Operating Systems
	Java

	Overview
	Why integrate?
	Why Java?
	Programming Model
	Centralized or Distributed Applications
	Request/Response
	Threading model
	Relationship to JDBC

	Windows Installation
	Installing from CD
	LibraryJARs
	NCM API JAR

	Configuration Files
	Samples
	Documentation
	Setting Up a Command-line Environment
	Setting up an integrated development environment

	Unix Installation
	Installing from CD
	LibraryJARs
	NCM API JAR

	Configuration Files
	Samples
	Documentation
	Setting Up a Command-line Environment
	Setting up an integrated development environment

	Programming with the NCM Java API
	Working with the Session object
	Session contexts
	UserIDs and Permissions

	Executing requests
	Relationship between the API and the CLI or Telnet/SSH Proxy

	Handling results
	Status
	Simple results
	Complex results: ResultSet type
	Exceptions

	Metadata

	Integration Hooks
	Run External Application tasks
	Callbacks
	Approver callback interface
	Approver use cases
	Approver coding
	Cleaner callback interface
	Cleaner use case
	Cleaner coding

	Commands
	Permissions
	Commands and Return Values
	ResultSet Contents

	Permissions
	Appendix A: NCM Documentation
	Appendix B: Obtaining Documentation, Obtaining Support, and Security Guidelines

