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C H A P T E R 1

VPN Site-to-Site Solution Overview

This chapter includes the following sections:

• Introduction, page 1-1

• VPN Site-to-Site Design Overview, page 1-2

• IPSec Overview, page 1-10

Introduction
This design guide defines the comprehensive functional components required to build a site-to-site 
enterprise virtual private network (VPN) solution. The individual hardware requirements and their 
interconnections, software features, management needs, and partner dependencies are described, to 
provide for a customer-deployable, manageable, and maintainable site-to-site enterprise VPN solution.

This document focuses on Cisco IOS VPN router products and serves as a design guide for those 
intending to deploy a site-to-site VPN based on IP Security (IPSec).

The designs described in this guide are based on the SAFE VPN architecture. Additional information on 
how to deploy SAFE VPN is provided. 

Note The reader should first be familiar with the SAFE VPN White Paper. Cisco SAFE documentation can be 
found at the following URL: http://www.cisco.com/go/safe.

This design guide provides an overview of three different VPN solutions, followed by design 
recommendations as well as product selection and performance information. Finally, configuration 
examples and a case study are presented.

The following three solutions are described:

• Solution One—IPSec in combination with Generic Routing Encapsulation (GRE)

• Solution Two—Dynamic Multipoint VPN (DMVPN)

• Solution Three—IPSec as the solitary tunneling method with Dead Peer Detection (DPD), Reverse 
Route Injection (RRI), and Hot Standby Router Protocol (HSRP) for failover

All three of these solutions share the following characteristics:

• Site-to-site VPN topologies

• Cisco VPN routers running Cisco Internetwork Operating System (IOS)
1-1
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• Use of Enhanced Interior Gateway Routing Protocol (EIGRP) as a routing protocol across the VPN 
with GRE configurations

• Data as the primary traffic component

• No quality of service (QoS) features enabled

• Evaluation of Cisco VPN product performance in scalable and resilient designs

Note Information on related VPN topics can be found at the following URL: http://www.cisco.com/go/srnd

VPN Site-to-Site Design Overview
This section provides an overview of the VPN site-to-site design, and includes the following topics:

• Starting Assumptions, page 1-2

• Design Topology, page 1-3

• Site-to-Site VPN Design Components, page 1-4

• Cisco VPN Product Overview, page 1-6

• Solution Benefits, page 1-8

• Three Solutions—Overview and Recommendations, page 1-8

Starting Assumptions
The design approach presented in this design guide makes several starting assumptions:

• The design supports a typical data traffic profile for customers (see Scalability Testing 
Methodology, page 3-1 for more detail on the traffic profile used during scalability testing). Later 
testing includes multi-service traffic in addition to the typical data traffic profile (see Subsequent 
Testing, page 3-2 for more information.)

• High availability and resiliency after failover are critically important; therefore, the 
recommendations in this design guide reflect the benefits of built-in redundancy and failover with 
fast convergence. This is discussed further in Chapter 3, “Selecting Solution Components.”

• It is assumed that the customer has a need for diverse traffic requirements, such as IP multicast, 
multi-protocol, and support for routing. The use of GRE and a routing protocol are also discussed 
in more detail in Solution One (IPSec with GRE)—Design Recommendations, page 2-7 and 
Solution Two (DMVPN)—Design Recommendations, page 2-13.

• An additional design is presented in Solution Three (IPSec with DPD, RRI, and HSRP)—Design 
Recommendations, page 2-20. This design utilizes IPSec alone as the sole tunneling method. The 
“elimination” of GRE as an additional tunneling protocol reduces the encrypted packet size by an 
average of 24 bytes. This configuration proves useful for many enterprises that do not require 
support for a routing protocol passing through the tunnel, multi-cast traffic, or multi-protocol traffic. 

• Cisco products should be maintained at reasonable CPU utilization levels. This is discussed in more 
detail in Chapter 3, “Selecting Solution Components,” including recommendations for both 
head-end and branch-end devices, and software revisions.

• Although costs were certainly considered, the design recommendations assume that the customer 
will deploy current VPN technologies, including hardware-accelerated encryption.
1-2
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• Voice over IP (VoIP), video, and other latency-sensitive traffic is not addressed in this design guide. 
Considerations for handling multi-service and other latency-sensitive applications may be found in 
the Voice and Video Enabled IPSec VPN (V3PN) Design Guide at the following URL: 
http://www.cisco.com/application/pdf/en/us/guest/netsol/ns241/c649/ccmigration_09186a00801ea
79c.pdf

• Finally, this design is targeted for deployment by enterprise-owned VPNs; however, the concepts 
and conclusions are valid regardless of the ownership of the edge tunneling equipment, and are 
therefore valuable for service provider-managed VPNs as well.

Design Topology
The primary topology discussed is a hub-and-spoke deployment model, where the primary enterprise 
resources are located in a large central site and multiple smaller sites or branch offices are connected 
directly to the central site over a VPN, as shown in Figure 1-1.

Figure 1-1 Hub-and-Spoke VPN

The introduction of DMVPN makes a design with hub-and-spoke connections possible, and provides the 
ability to create temporary connections between spoke sites using IPSec encryption. This topology is 
shown in Figure 1-2.
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Figure 1-2 Spoke-to-Spoke VPN

Site-to-Site VPN Design Components
VPN applications include extending the reachability of an enterprise WAN and replacing classic WAN 
technologies such as leased lines, Frame Relay, and ATM. Site-to-site VPNs are primarily deployed to 
connect branch office locations to the central site (or sites) of an enterprise.

The requirements of enterprise customers for traditional private WAN services, such as multi-protocol 
support, high availability, scalability, and security, are also requirements for VPNs. VPNs can often 
meet these requirements more cost-effectively and with greater flexibility than private WAN services.

The key components of this site-to-site VPN design are the following:

• Cisco high-end VPN routers serving as VPN head-end termination devices at a central campus 
(head-end devices)

• Cisco VPN access routers serving as VPN branch-end termination devices at branch office locations 
(branch-end devices)

• One of the following:

– Solution One—IPSec/GRE tunnels that interconnect the head-end and branch-end devices in 
the VPN

– Solution Two—IPSec/GRE tunnels created by DMVPN that interconnect the head-end and 
branch-end devices and allow dynamic spoke-to-spoke tunnels between branch-end devices in 
the VPN

– Solution Three—IPSec tunnels with Dead Peer Detection (DPD), Reverse Route Injection 
(RRI), and Hot Standby Router Protocol (HSRP) to perform the head-end to branch-end 
interconnection

• Internet services procured from a third-party ISP (or ISPs) serving as the WAN interconnection 
medium
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Cisco VPN routers are a good choice for site-to-site VPN deployments because they can accommodate 
any network requirement inherited from a Frame Relay or private line network, such as support for 
multicast and latency-sensitive traffic, routing for resiliency, and support for non-IP protocols such as 
Internetwork Packet Exchange (IPX) or Systems Network Architecture (SNA). 

Note See Chapter 3, “Selecting Solution Components,” for a discussion on selecting head-end and branch-end 
products.

The network topology of the hub-and-spoke design is shown in Figure 1-3.

Figure 1-3 VPN Hub-and-Spoke Solution Network Topology

This solution is a hub-and-spoke network with multiple head-end devices for redundancy. Head ends are 
high-end tunnel aggregation routers servicing multiple IPSec or IPSec/GRE tunnels for a prescribed 
number of branch office locations. In addition to terminating the VPN tunnels at the central site, 
head ends act as the distribution point for all routing information to and from branch-end devices if a 
routing protocol has been configured. In DMVPN deployments, head-end devices also act as Next Hop 
Resolution Protocol (NHRP) caching devices, and next hop servers for the branch-end devices.

Branch ends are typically access routers that provide IPSec or IPSec/GRE tunnels from the branch office 
locations to the central site. In addition to terminating the VPN tunnels, the branch end often provides 
WAN access and in some implementations may serve as a firewall. 

To ensure authentication and encryption, IPSec tunnels are provisioned to interconnect branch offices 
to the central site. 

Note See IPSec Overview, page 1-10 for a more detailed discussion of IPSec.

Network resiliency is provided differently depending on the initial network requirements. Solution One 
implements a routing protocol across the VPN. Because IPSec does not provide the ability to run 
protocols requiring IP multicast (such as EIGRP), IPSec must be used together with GRE. GRE also 
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provides the ability for the customer to support more diverse traffic across the VPN, including IP 
multicast and non-IP protocols. (See Solution One (IPSec with GRE)—Design Recommendations, page 
2-7 for more information on the need for and benefits of GRE.)

For high availability in the case of a failure, each branch-end access router should have a primary and 
secondary IPSec/GRE tunnel provisioned to two different head-end tunnel aggregation routers. Solution 
Two uses a routing protocol with redundant head-end tunnel aggregation routers, but employs DMVPN 
(with the mGRE tunnel feature) to support tunnel creation and NHRP to discover the Non-Broadcast 
Multiple Access (NBMA) addresses of other devices for which an on-demand encrypted connection is 
required. DMVPN supports IP unicast and multicast but does not support non-IP protocols. (See 
Solution Two (DMVPN)—Design Recommendations, page 2-13 for a discussion of this design 
implementation.) 

Solution Three uses IPSec as the sole tunneling method, with DPD for peer state detection, RRI for 
optimal packet routing from the head end to the remotes, and HSRP for resiliency. (See Solution Three 
(IPSec with DPD, RRI, and HSRP)—Design Recommendations, page 2-20 for a discussion on how to 
distribute and aggregate these tunnels.) 

There are currently several service provider options available to enterprise customers for deploying a 
VPN, including the enterprise owning and managing the VPN, and needing only Internet service from 
ISPs. Optionally, an enterprise might consider outsourcing their VPN to the service provider. The 
architecture and recommendations provided in this design guide are generally valid for either VPN 
deployment option, differing only in the ownership of the edge VPN equipment. 

This design guide supports a wide variety of alternatives for deploying a flexible VPN solution that will 
respond to changing customer requirements. However, the scale of deployment affects decisions on 
which products are used and the challenges of configuring them.

Cisco VPN Product Overview
The implementation presented in this guide is focused on using Cisco VPN router products in 
IPSec-based VPN applications. Table 1-1 provides a summary of the recommended deployment of Cisco 
VPN router product families to the different head end and branch office applications.
1-6
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Note Results shown for the Cisco PIX and the Cisco VPN 3000 Concentrator are valid only in Solution Three 
designs (IPSec with DPD, RRI, and HSRP), because these devices are not capable of GRE-encapsulated 
tunnels.

Table 1-1 Cisco VPN Product Applications Summary

Application Cisco VPN Router Family VPN Acceleration Options
VPN Performance (based on 
Cisco scalability tests) 1

1.  The VPN performance typically listed is for large packets only and full CPU utilization. However, in the Cisco scalability test configuration with a packet 
mix and not exceeding 50 percent CPU utilization for head ends and 65 percent for branch offices, the performance is as listed here.

Central head end site 6500

7200

7100

3700

PIX535

3080

VPNSM

ISM (single or dual), VAM

ISA (single or dual), VAM

AIM (Base, Medium, High Perform) 

VAC+

SEP-E

Up to 1.1 Gbps

Up to 66 Mbps

Up to 30 Mbps

Up to 16 Mbps

Up to 167 Mbps

Up to 39.4 Mbps

Large branch office 3845

3845

3825

3825

3700

3600

2600

Hardware included

AIM HPII

Hardware included

AIM HPII

AIM HPII

AIM (Base, Medium, High Perform)

AIM (Base, Extended Perform)

Up to 29 Mbps

Up to 36 Mbps

Up to 22 Mbps

Up to 27 Mbps

Up to 35 Mbps

Up to 15 Mbps

Up to 10 Mbps

Medium branch 
office

2800

2800

3600

2600

1800

1800

1700

Hardware included

AIM HPII

AIM (Base, Medium, High Perform)

AIM (Base, Extended Perform)

Hardware included

AIM HPII

VPN Module

Up to 14 Mbps

Up to 18 Mbps

Up to 15 Mbps

Up to 10 Mbps

Up to 3.5 Mbps

Up to 5 Mbps

Up to 2.5 Mbps

Small office 1800

1800

1700

800

Hardware included

AIM HPII

VPN Module

Hardware included

Up to 3.5 Mbps

Up to 5 Mbps

Up to 2.5 Mbps

Up to 900 kbps
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Solution Benefits
Each solution design offers a number of advantages over competing approaches to deploying site-to-site 
VPNs. The primary benefits of deploying the solutions described in this guide include the following:

• Security

– Traffic between branch offices or between the branch office and the central site is encrypted 
using Triple Data Encryption Standard (3DES).

– Traffic between branch offices or between branch offices and the central site is authenticated 
with Secure Hash Algorithm (SHA)-1.

• High Availability

– A dynamic routing protocol (EIGRP) can be used to manage network routing and provide fast 
convergence.

– HSRP provides redundancy during a failure.

– A level of redundancy is provided at the head end such that the design can tolerate a complete 
failure of a head end and recover quickly.

• Scalability

– A building-block approach to scalability is used such that the design can support thousands of 
branch-offices, limited only by the number of head-end devices deployed.

– Verified performance aggregating up to 500 branch offices (1000 tunnels) to each head end.

– Although IPSec packet fragmentation can significantly reduce VPN throughput performance, 
there are features in Cisco IOS to somewhat mitigate this problem.

• Flexibility

– Cisco VPN router product line allows customization of head end and branch office routers.

– Either hardware-accelerated or software-supported encryption can be deployed. Use of 
hardware-accelerated encryption is highly recommended.

– With GRE, it is possible to build a VPN network that can handle diverse network traffic 
requirements, such as multicast, multi-protocol, and support for routing.

Note Enabling QoS across the VPN for support of latency-sensitive traffic, such as Voice over IP 
and Video, is covered in a separate design guide available at the following URL: 
http://www.cisco.com/application/pdf/en/us/guest/netsol/ns241/c649/ccmigration_09186a
00801ea79c.pdf

• Reducing Costs

– Many VPN services offer the enterprise some level of cost reduction.

Three Solutions—Overview and Recommendations
This section presents a brief overview of the three solutions described in this guide, along with 
deployment recommendations. These solutions are described in more detail in the subsequent sections.
1-8
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Solution One—IPSec with GRE

The following are high-level recommendations for Solution One (IPSec with GRE deployment 
supporting multi-protocol and/or multicast traffic including routing protocols):

• Use IPSec in tunnel mode with 3DES for encryption of transported data.

• Use GRE for transport of multi-protocol or multicast data across the VPN.

• Configure two tunnels between each remote to different redundant head-end routers for failover and 
resiliency.

• Configure a routing protocol with route summarization for dynamic routing.

• Implement path MTU discovery (PMTUD) to limit packet fragmentation.

Solution Two—DMVPN

The following are high-level recommendations for Solution Two (DMVPN deployment supporting IP 
unicast and/or multicast traffic including routing protocols):

• Use IPSec in transport mode with DMVPN, using 3DES for encryption of transported data.

• Use GRE, via DMVPN mGRE implementation, for transport of IP unicast or multicast data across 
the VPN.

• Configure two tunnels between each remote to different redundant head-end routers for failover and 
resiliency.

• Configure a routing protocol with route summarization for dynamic routing.

• Implement PMTUD to limit packet fragmentation.

Solution Three—IPSec with DPD, RRI, and HSRP

The following are high-level recommendations for Solution Three (IPSec deployment with DPD, RRI, 
and HSRP for unicast IP traffic only):

• Use IPSec in tunnel mode with 3DES for encryption of transported data.

• Use DPD for IPSec peer state feedback.

• Use RRI for optimal routing from the campus to the remote sites.

• Configure dynamic crypto maps to ensure optimal routing and simplify configurations on head-end 
routers.

• Use HSRP for redundancy and failover.

The following is a limitation with Solution Three:

• The IPSec tunnel must be initiated via the remote branch. When dynamic tunnels are configured, 
the head-end devices do not have the necessary information to initiate an IPSec connection. 

Note See Solution Three Limitation—Tunnel Initiation Not Possible from Head Ends, page 2-22 for more 
information.
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IPSec Overview
This section introduces IPSec and its application in VPNs, and includes the following topics:

• Introduction to IPSec, page 1-10

• Tunneling Protocols, page 1-10

• IPSec Protocols, page 1-11

• IPSec Modes, page 1-12

• Internet Key Exchange, page 1-13

Note For a more in-depth understanding of IPSec, see the SAFE VPN White Paper. Cisco SAFE 
documentation can be found at the following URL: http://www.cisco.com/go/safe.

Introduction to IPSec
The IPSec standard provides a method to manage authentication and data protection between multiple 
peers engaging in secure data transfer. IPSec includes the protocol ISAKMP/Oakley and two IPSec IP 
protocols, Encapsulating Security Protocol (ESP) and Authentication Header (AH). 

IPSec uses symmetrical encryption algorithms for data protection. Symmetrical encryption transforms 
are more efficient and are easier to implement in hardware. These algorithms need a secure method of 
key exchange to ensure data protection. Internet Key Exchange (IKE) ISAKMP/Oakley protocols 
provide that capability.

This solution requires a standards-based way to secure data from eavesdropping and modification. IPSec 
provides such a method. IPSec has a choice of transform sets so that users may choose the strength of 
their data protection. IPSec also has several hash methods to choose from, each giving different levels 
of protection.

Tunneling Protocols
You can use several tunneling protocols, which vary in the features they support, the problems they are 
designed to solve, and the amount of security they provide to the data being transported. The designs 
presented in this paper focus on the use of IPSec as a tunneling protocol alone and IPSec used in 
conjunction with GRE tunnels.

When used alone, IPSec can provide a private, resilient network when support for multicast, routing 
protocols, or non-IP protocols is not required. When support for one or more of these features is required, 
IPSec should be used in conjunction with GRE. Neither of these two tunnel protocols by themselves have 
the necessary features to provide privacy and the ability to support multi-protocols, but the combination 
of IPSec and GRE achieves both functions. 

Note Other tunneling protocols include Point-to-Point Tunneling Protocol (PPTP) and Layer Two Protocol 
(L2TP). Both of these are based in user- or client-to-concentrator networks, commonly called remote 
access solutions, and are not used in the solutions described in this design guide.
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IPSec Protocols
The two IP protocols used in the IPSec standard are ESP and AH. These are discussed in more detail in 
the next two sections.

Encapsulating Security Protocol

The ESP header (IP protocol 50) forms the core of the IPSec protocol. This protocol, in conjunction with 
an agreed-upon encryption method or transform set, protects data by rendering it undecipherable. This 
protocol protects only the data portion of the packet. It can optionally also provide for authentication of 
the protected data. Figure 1-4 shows how ESP encapsulates an IP packet.

Figure 1-4 Encapsulating Security Protocol (ESP)

Authentication Header

The other part of IPSec is formed by the AH protocol (IP protocol 51). The AH does not protect data in 
the usual sense by hiding the data, but it adds a tamper-evident seal to the data. It also protects the 
non-mutable fields in the IP header carrying the data. This includes the address fields of the IP header. 
The AH protocol should not be used alone when there is a requirement for data confidentiality. 
Figure 1-5 shows how AH encapsulates an IP packet.
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Figure 1-5 Authentication Header (AH)

IPSec Modes
IPSec has two methods of forwarding data across a network: transport mode and tunnel mode, which 
differ in their application as well as in the amount of overhead added to the passenger packet. These 
modes are described in more detail in the next two sections.

Tunnel Mode

Tunnel mode works by encapsulating and protecting an entire IP packet. Because tunnel mode 
encapsulates or hides the IP header of the packet, a new IP header must be added for the packet to be 
successfully forwarded. The encrypting devices themselves own the IP addresses used in this new 
header. These addresses can be specified in the configuration in Cisco IOS routers. Tunnel mode may 
be employed with either or both ESP and AH. Tunnel mode results in an additional packet expansion of 
approximately 20 bytes because of the new IP header. Tunnel mode expansion of the IP packet is shown 
in Figure 1-6.
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Figure 1-6 IPSec Tunnel Mode

Transport Mode

Because packet expansion can be a concern during the forwarding of small packets, a second forwarding 
method is also possible. IPSec transport mode works by inserting the ESP header in between the IP 
header and the next protocol or the Transport layer of the packet.

Both IP addresses of the two network nodes whose traffic is being protected by IPSec are visible. This 
mode of IPSec can sometimes be susceptible to traffic analysis. However, because there is no additional 
IP header added, it results in less packet expansion. Transport mode can be deployed with either or both 
ESP and AH. This mode works well with GRE because GRE already hides the addresses of the end 
stations by adding its own IP header. Transport mode is the optimum choice for the tunnel protection 
method used by DMVPN.

Transport mode expansion of the IP packet is shown in Figure 1-7.

Figure 1-7 IPSec Transport Mode

Internet Key Exchange
To implement a VPN solution with encryption, the periodic changing of encryption keys is necessary. 
Failure to change these keys makes the network susceptible to brute force attacks. IPSec solves this 
problem with the IKE protocol, which uses two other protocols to authenticate a peer and generate keys. 
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This protocol uses a mathematical routine called a Diffie-Helman exchange to generate symmetrical 
keys to be used by two IPSec peers. IKE also manages the negotiation of other security parameters such 
as the data to be protected, the strength of the keys, the hash methods used, and whether the packets are 
protected from replay. IKE uses UDP port 500.

Security Association

A Security Association (SA) is an agreement between two peers engaging in an IPSec exchange. This 
agreement includes items such as the type and strength of the encryption used to protect the data, and it 
also includes the method and strength of the data authentication (if any) and the method of creating new 
keys for that data protection. SAs are performed in two phases, as described in the two sections that 
follow.

IKE Phase One

Phase one is the initial negotiation of SAs between two IPSec peers. Phase one can optionally also 
include an authentication in which each peer is able to verify the identity of the other. This conversation 
between two IPSec peers can be subject to eavesdropping with no significant vulnerability of the keys 
being recovered. Phase one SAs are bidirectional; data may be sent and received using the same key 
material generated. 

Phase one has two possible authentication methods: pre-shared keys or RSA signatures/digital 
certificates. Configuration examples in this guide use pre-shared keys. 

IKE Phase Two

Phase two SAs are negotiated by the IKE process (ISAKMP) on behalf of other services such as IPSec, 
which need key material for operation. Because the SAs used by IPSec are unidirectional, a separate key 
exchange is needed for data flowing in the forward direction from the reverse direction. This doubles 
the amount of work an eavesdropper needs to do to successfully recover both sides of a conversation. 
The two peers have already agreed upon the transform sets, hash methods, and other parameters during 
the phase one negotiation. Quick mode is the method used for the phase two SA negotiations.

IKE Authentication

There are two primary methods of configuring the VPN such that the VPN devices can authenticate with 
their peer: pre-shared keys and digital certificates. These are discussed in the following sections.

Pre-shared Keys

The pre-shared keys method involves advance configuration using a set of keys known to both of the 
peer VPN devices.

As the number of IPSec devices in the VPN grows, scalability becomes an issue because a separate key 
needs to be maintained for each IPSec peer. Replacement of a device in the network can also lead to 
compromise of the keys in use at the time.

The scalability testing performed for this guide uses the pre-shared keys method of authentication.

Digital Certificates

An alternative to the pre-shared keys method is to implement the use of digital signatures contained in 
digital certificates. Digital signatures make use of a trusted third party, known as a certificate authority 
(CA), to digitally sign the public key portion of the encrypted nonce. 
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Included with the signature are a name, serial number, validity period, and other information that an 
IPSec device can use to determine the validity of the certificate. Certificates can also be revoked, 
denying the IPSec device the ability to successfully authenticate. 

For more information, see the Tech Tips on CCO:

• All URLs are listed on the TSP for IPSEC at the following URL: 
http://www.cisco.com/cgi-bin/Support/browse/psp_view.pl?p=Technologies:IPSec&s=Implement
ation_and_Configuration

• Backup and restore options for your Cisco IOS CA Server—
http://www.cisco.com/en/US/partner/tech/tk583/tk372/technologies_tech_note09186a008021ac26.
shtml

• Ceritificate Expiration and Auto-Enroll (Automatic Re-Enrollment) Feature FAQ—
http://www.cisco.com/en/US/partner/tech/tk583/tk372/technologies_q_and_a_item09186a008021
49a8.shtml 

• Certificate revocation list distribution over SCEP configuration example—
http://www.cisco.com/en/US/partner/tech/tk583/tk372/technologies_configuration_example09186
a008021bc55.shtml 

• Certificate revocation list distribution over SCEP FAQ—
http://www.cisco.com/en/US/partner/tech/tk583/tk372/technologies_q_and_a_item09186a008021
bc50.shtml

• Cut-n-paste style certificate enrollment to a Cisco IOS CA configuration example—
http://www.cisco.com/en/US/partner/tech/tk583/tk372/technologies_configuration_example09186
a008021568b.shtml 

• Enrollment over SCEP to a Cisco IOS CA (Headend Aggregrator VPN Router) configuration example—
http://www.cisco.com/en/US/partner/tech/tk583/tk372/technologies_configuration_example09186a008
0215686.shtml
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C H A P T E R 2

Selecting a Site-to-Site VPN Solution

In designing a VPN deployment for a customer, it is essential to integrate broader design considerations 
such as high availability and resiliency, security, and potentially QoS. 

This chapter starts with an overview of some general design considerations that must be factored into 
the design. This is followed by the requirements and prerequisites for each of the three solutions, as well 
as additional detailed sections on these solutions as required.

This chapter includes the following topics:

• Types of Site-to-Site VPN Deployments, page 2-1

• Solution Design Requirements, page 2-3

• Solution One (IPSec with GRE)—Design Recommendations, page 2-7

• Solution Two (DMVPN)—Design Recommendations, page 2-13

• Solution Three (IPSec with DPD, RRI, and HSRP)—Design Recommendations, page 2-20

• Comparing Failover and Convergence Performance, page 2-22

• Additional Design Considerations, page 2-26

Types of Site-to-Site VPN Deployments
Several general factors must be considered before selecting a customer VPN solution. The following 
general factors should be considered when making a decision as to the type of site-to-site IPSec VPN to 
deploy:

• Network Profile

– What applications does the customer expect to run over the VPN?

The recommendations in this design guide focus on data applications. Multi-service 
applications such as voice or video over IP require additional design considerations, such as 
QoS. These requirements are covered in the Voice and Video Enabled IPSec VPN (V3PN) 
Design Guide at the following URL: 
http://www.cisco.com/application/pdf/en/us/guest/netsol/ns241/c649/ccmigration_09186a008
01ea79c.pdf

– Is multicast and/or multi-protocol support required?

IPSec supports only tunneling of unicast IP traffic. Multicast IP is required to run a routing 
protocol across the VPN and to support applications such as video. GRE can be used in 
conjunction with IPSec to support multicast, multi-protocol traffic, and routing protocols.
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– How much packet fragmentation does the customer expect on their network?

The VPN design needs to consider the amount of fragmentation that may occur, to minimize the 
performance impacts at the head end.

– Are there requirements for dynamic spoke-to-spoke connections?

Hub-and-spoke is a popular model inherited from traditional WANs. Some customers have 
legitimate needs for a design that includes spoke-to-spoke connectivity.

– Are the NBMA (Non-Broadcast Multiple Access) addresses statically assigned at all locations, 
or do some branch sites receive these addresses via DHCP?

When addresses are assigned via Dynamic Host Configuration Protocol (DHCP), certain 
aspects of router configuration at the host are simplified greatly by the DMVPN use of NHRP 
to cache NBMA addresses. 

• Scalability

– How many branches does the customer expect to aggregate to each central site?

The number of branch offices, plus the amount of traffic expected from each branch, determines 
how many head-end aggregation devices are required. Improper aggregation can result in a VPN 
with unacceptable performance.

– What is the expected traffic throughput between branch offices and the central site?

The traffic throughput to and from branches has a direct impact on the number of branches that 
should be aggregated by a head-end device. If not properly considered, the resulting VPN design 
may have unacceptable performance. 

• Resiliency

– What are the customer expectations for resiliency? 

As in the case of a typical enterprise network, a VPN must be resilient to recover in the event 
of a failure. The designs discussed in this guide assume that a customer requires redundancy at 
the central site allowing for complete failure of a head-end device.

– Is failover time or post-failure convergence time a concern?

VoIP applications may have a much more stringent requirement for convergence times as 
compared to simple data applications. These solutions can be tuned somewhat to lower 
convergence times at a cost of router CPU utilization. 

• Security

– What type of IKE authentication method will be implemented?

Different methods of IKE authentication necessitate different levels of implementation 
complexity. For example, configuring pre-shared keys is the least complex method; however, 
scalability may be an issue. Similarly, use of certificates is highly scalable, yet they are more 
complex to deploy. 

• Services

– What other services will run on the device?

VPNs can be deployed with dedicated function devices or as multiple function devices, 
providing WAN access, firewall, and VPN services.

Note This design guide provides only general design considerations. Each customer network may require 
customization because of customer-specific requirements.
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Solution Design Requirements
This section includes the following topics:

• Network Requirements, page 2-3

• Using IPSec for Data Encryption, page 2-4

• Minimizing Packet Fragmentation, page 2-5

• IP Addressing, page 2-6

• Placing VPN Head Ends Relative to the Firewall, page 2-7

Network Requirements 
Choosing which of the three solutions described in this guide to implement depends on network 
requirements such as the following:

• Is there a requirement for protocols other than unicast IP alone, or will this requirement exist at any 
time in the future? If so, the deployment should include an additional tunneling protocol; GRE 
should be used in this solution, even at the expense of creating additional CPU overhead and packet 
expansion. 

• Is there a requirement for spoke-to-spoke tunnels, but no requirement for non-IP protocols? Do the 
majority of the branch sites receive their IP addresses via DHCP? If so, then the DMVPN version 
of GRE plus NHRP may be the best choice. 

Consider this decision carefully because it may be difficult and time-consuming to change the 
deployment later. When no further requirements for either multicast or non-IP protocols require 
additional encapsulation methods such as GRE, the network implementer may opt to configure IPSec 
High Availability (HA). This solution utilizes IPSec as the sole tunneling method. This configuration 
utilizes DPD for peer state feedback, RRI for optimal routing from the campus network to the remotes, 
and HSRP for head end resilience. This solution is more conservative with router CPU resources than 
the IPSec with GRE solution. 

The following recommendations are applicable to all three solutions. These good network design 
practices apply to these solutions as well as to networks in general.

• Designing the VPN

– Minimize packet fragmentation. Keep IPSec packet fragmentation to a minimum on the 
customer network.

– Deploy hardware encryption acceleration wherever possible, minimizing router CPU overhead.

– Configure 3DES encryption where permitted (some exports of 3DES may be prohibited by law).

– Configure IPSec authentication.

– Consider the interactions of IPSec with other networking functions. 

Note See IPSec Interactions with Other Networking Functions, page 2-27 for additional 
information.

• Selecting Cisco VPN products

– Select Cisco VPN router products at the head end based on the following:

• Number of tunnels aggregated up to 500 tunnels per head end
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• Throughput aggregated up to the maximum recommendations for each product

• Maintaining CPU utilization below 50 percent

– Calculate the number of head-end devices based on total tunnel and throughput aggregation 
requirements, as well as to handle failover. See Sizing the Head End, page 3-6 for additional 
information.

– Select Cisco VPN router products at the branch offices based on the following:

• Throughput aggregated up to the maximum recommendations for each product

• Maintaining CPU utilization below 65 percent

Note See Sizing the Branch Site, page 3-11 for more information.

– Use the recommended levels of Cisco IOS software as indicated. 

Note See Software Releases Evaluated, page 3-18 for more information.

The following sections provide additional detailed information on some of these recommendations.

Using IPSec for Data Encryption
There are three elements to consider when securing the traffic flowing over the VPN:

• Authentication—Ensuring the senders/receivers of traffic are known, valid entities

• Confidentiality—Encrypting data to render it imperceptible without the proper key

• Message integrity—Identifying when data has been modified

IKE is used to ensure the authentication of the IPSec peers.

To ensure confidentiality of data transported over the VPN, encryption algorithms such as Data 
Encryption Standard (DES) or Triple Data Encryption Standard (3DES) are implemented. Because 
3DES is more secure, it should be implemented if possible, except in cases where export restrictions may 
limit the implementation to DES.

To ensure message integrity, the IPSec protocol is used with a hash method, such as Message Digest 5 
(MD5) or Secure Hash Algorithm 1 (SHA-1).

It is possible to implement only a hash method or only an encryption standard to secure the VPN. 
However, it is highly recommended that both be implemented in combination. This design guide 
recommends the combination of 3DES and SHA-1. 

With hardware-accelerated encryption implemented, performance is not significantly affected by choice 
of encryption method.

Note Advanced Encryption Standard (AES) is another option for encryption of data. For more information 
about the Cisco implementation of AES, see the following URL: 
http://www.cisco.com/en/US/products/sw/iosswrel/ps1839/products_feature_guide09186a0080110bb6
.html
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Minimizing Packet Fragmentation
IPSec and GRE headers increase the size of packets, and packet fragmentation is a cause of decreased 
performance in IPSec networks. If the size of a packet before encryption is at or near the maximum 
transmission unit (MTU) of the transmission media, the encrypted packet with the additional IPSec and 
GRE headers becomes greater than the MTU of the transmitting interface. This results in Layer 3 
fragmentations on the outbound interface, as shown in Figure 2-1:

Figure 2-1 IPSec/GRE Packet Expansion

This results in the packet being fragmented at Layer 3, and the need for these packets to be re-assembled 
before the decryption process. In the current Cisco IOS implementation, re-assembly is performed in 
process-switched mode, resulting in significantly lower throughput performance. Figure 2-2 shows an 
example of how CPU utilization increases with increasing Layer 3 packet fragmentation:
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Figure 2-2 Increase in CPU from IPSec Packet Fragmentation

Cisco recommends avoiding fragmentation whenever possible by using one of the following methods. 
The methods below are listed in order of least to most effort, complexity, and cost to a customer:

• Employ path MTU discovery (PMTUD). See Path MTU Discovery, page 2-11 for more information 
on this method.

• Set the MTU of attached workstations to 1400 bytes.

There is a feature supported by current versions of Cisco IOS called Look Ahead Fragmentation 
(sometimes abbreviated LAF and sometimes called “pre-fragmentation”). With LAF enabled, the device 
looks at the MTU of the outbound crypto interface, evaluates the headers to be added to a packet, and 
performs fragmentation at the IP level before sending the fragments to the crypto engine. The receiving 
host decrypts the fragments and passes them to the receiving host, which then bears the burden of 
re-assembling the fragments into a packet.

In a Cisco IOS router running 12.1(11)E, 12.2(13)T or later, LAF is enabled by default on physical 
interfaces, but needs to be configured on tunnel interfaces. In the Catalyst 6500 switch or Cisco 7600 
router with a Cisco VPN Services Module, LAF is enabled by default and does not need to be configured 
on the tunnel interfaces.

The throughput results presented in this design guide are shown with and without Layer 3 fragmentation 
whenever both measurements were recorded.

IP Addressing
Proper IP addressing is critical for a successful VPN. To maintain scalability, performance, and 
manageability, it is highly recommended that remote sites use a subnet of the major network to allow for 
summarization. Using this method, the crypto ACLs, where they are configured in the command-line 
interface (CLI), need only a single line for every local network; possibly a single entry if the local 
networks are summarized. 

Proper address summarization is highly recommended. Address summarization conserves router 
resources, which makes routing table sizes smaller. Address summarization also saves memory in routers 
and eases troubleshooting tasks. In addition to conserving router resources, address summarization also 
simplifies the configuration of routers in IPSec networks. 
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Note Consult the “IP Addressing” section of the Cisco SAFE VPN White Paper for a more thorough 
discussion. Cisco SAFE documentation can be found at the following URL: 
http://www.cisco.com/go/safe.

Placing VPN Head Ends Relative to the Firewall
The placement of the VPN head-end devices in the network relative to the enterprise firewall can 
critically affect the security of any VPN deployment.

Recommended architectures are discussed in the SAFE VPN white papers available at the following 
URL: http://www.cisco.com/go/safe. 

Solution One (IPSec with GRE)—Design Recommendations
This section details the recommendations specific to Solution One (IPSec with GRE). Solution One is 
recommended when multi-protocol, multicast support is needed, or when routing protocol support is 
necessary. For deployments without these specific requirements, Solution Three may be used instead.

This section includes the following topics:

• Implementing GRE, page 2-7

• High Availability and Resiliency, page 2-8

• Head End Load Distribution, page 2-9

• Number of Tunnels per Device, page 2-10

• Path MTU Discovery, page 2-11

• Alternative Network Topologies, page 2-11

• Using a Routing Protocol across the VPN, page 2-11

• Route Propagation Strategy, page 2-12

Implementing GRE
Although IPSec provides a secure method for tunneling data across an IP network, it has several 
limitations. First, IPSec does not support broadcast or multicast IP, preventing the use of protocols such 
as routing protocols that rely on these features. Second, IPSec does not support the use of multi-protocol 
traffic.

To overcome these limitations in networks that must support them, you should implement GRE tunnels. 
GRE is a protocol that can be used to “carry” other passenger protocols, such as broadcast or multicast 
IP, as well as non-IP protocols, as is shown in Figure 2-3.
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Figure 2-3 GRE as a Carrier Protocol of IP

Using GRE tunnels in conjunction with IPSec extends the functionality of the VPN so that multicast IP 
and non-IP protocols are possible. This provides a critical element of this solution by providing the 
ability to run a routing protocol across the network between the central site and branch offices.

Even if requirements such as multicast IP, non-IP protocols, or supporting routing protocols do not exist 
in the current customer network, designing the VPN for maximum flexibility prevents a costly and 
potentially disruptive re-design in the future should these become requirements.

IPSec or IPSec/GRE also enable private addressing. Without a tunnel protocol running (either IPSec 
tunnel mode or GRE) all end stations are required to be addressed with registered IP addresses. By 
encapsulating the IP packet in a tunneling protocol, private address space can be used.

With the IPSec/GRE solution, all traffic between sites is encapsulated in a GRE packet before the 
encryption process. This simplifies the access list used in the crypto map statements because they need 
only one line permitting GRE (IP Protocol 47).

High Availability and Resiliency
Traditionally, data networks were deployed as best effort networks with no guarantee as to the actual 
performance of the network, and they were frequently deployed with many single points of failure. For 
the next level of applications to be successfully deployed, networks must behave in a much more 
predictable manner. This not only includes recovery from failures within specific timeframes but also 
includes the ability to transport the packets to their destination with specific and repeatable (minimized) 
delays.

In all cases, networks should be designed so that the individual network elements operate conservatively. 
These elements include network devices, routers, switches, and so on, and the LAN and WAN links that 
connect these devices together.

To provide a level of resiliency in the VPN design, Cisco recommends configuring a primary and a 
secondary tunnel between each branch-end device and the head ends. Under normal operating 
conditions, both the primary and secondary tunnels are established. The routing protocol, such as 
EIGRP, maintains both routes, with the secondary tunnel being configured as a less preferred route. 
Figure 2-4 shows this configuration.
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Figure 2-4 High-Availability Tunnel Configuration

If a failure occurs at one of the head-end devices, the routing protocol detects that the route through the 
primary tunnel is no longer valid and, after convergence, the route through the secondary tunnel is used. 
When the primary is available again, traffic is routed back to the primary tunnel as the preferred route 
in the routing metrics.

The head end resiliency design presented here allows for failure of a single head-end device with proper 
failover to surviving head ends. This is normally adequate when the number of head ends is relatively 
low (for example, ten or less). If the number of head ends is relatively high (for example, twenty or 
more), the customer may want to consider designing for the possibility of multiple head-end device 
failures.

It may also be necessary in the customer strategy to have head-end devices geographically dispersed. 
Although not scalability tested, the architecture presented in this guide should readily support this 
configuration.

Note More information regarding this architecture is discussed in the SAFE VPN white papers available at the 
following URL: http://www.cisco.com/go/safe.

Configuration of primary and secondary tunnels to appropriate head ends is critical to maintain network 
resiliency. The next section discusses tunnel aggregation.

Head End Load Distribution
When laying out the network topology, it is important to consider load balancing across multiple 
head-end devices, especially in the case of a head-end device failure. This design recommends that there 
be at least two tunnels configured between a branch device and the head end. 

The primary tunnel (the preferred route) should be configured (via a bandwidth statement) to carry 
traffic under normal circumstances. The preferred primary tunnels should be evenly divided among the 
head-end devices. The secondary tunnels for branches should be evenly spread among the remaining 
(surviving) head-end devices.

For example, it would be highly undesirable for all the tunnels from a failed head-end device to 
re-establish to a single secondary head-end device when there are more devices that could distribute the 
load from the failed device. Figure 2-5 shows a typical network topology with high resiliency.
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Figure 2-5 Tunnel Aggregation for Resiliency

To plan for proper tunnel aggregation and load distribution in the case of a head-end device failure, the 
following algorithm should be used:

1. Start with the number of total branch devices to be aggregated at the head end.

2. Divide this number by the number of head-end devices. 

3. Multiply the result by 2 for primary and secondary tunnels. This is the total tunnels per head-end 
device.

4. Allocate the primary tunnels to each head-end device in the arrangement shown in Figure 2-5 in 
green.

5. For each group, allocate the secondary tunnels in a round-robin fashion to all head-end devices 
except the one serving as a primary for that group. This arrangement is also shown in Figure 2-5 in 
yellow.

6. Check to see that each head-end device is now allocated the same number of total tunnels per 
head-end device.

Note Please note that this calculation should take into account any tunnel throughput variances. 

Number of Tunnels per Device
The number of tunnels required for each head-end device should be scaled to the overall size of the 
network in which the VPN solution is being deployed. See Head End Devices, page 3-5 for more 
information.

Head end scalability testing did not include an exhaustive evaluation of the maximum number of tunnels 
that can be terminated to head-end devices. In addition, scalability testing of branch site devices in the 
Solution One design was performed with two tunnels per branch device. This did not include exhaustive 
testing of the number of tunnels these different platforms can support. Branch device testing, which 
focused specifically on the number of tunnels that can be safely terminated on specific products, was 
performed as part of design testing for Solution Two.
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Path MTU Discovery
A feature of IP called path MTU discovery (PMTUD) can eliminate the possibility of fragmentation if 
it is supported by the end stations. This procedure is run between two end stations with the participation 
of the network devices between them. 

During PMTUD, an MTU-sized packet is sent out by an end station with the “do not fragment” (DF) bit 
set. If this packet encounters a link with a lower MTU than the packet size, an ICMP error message is 
generated with a “3” in the type field (destination unreachable), a “4” in the code field (fragmentation 
needed and DF set), and the next-hop MTU size in the unused field of the ICMP header.

For this process to work over an IPSec network with GRE, the GRE tunnel MTU should be set to a value 
low enough to ensure that the packet makes it through the encryption process without exceeding the 
MTU on the outbound interface (usually 1400 bytes).

Alternative Network Topologies
The Solution One and Three designs recommend a hub-and-spoke topology. Partially meshed and fully 
meshed networks are supported with Solution Two (DMVPN). 

Hub-and-spoke topologies are generally easier and safer to implement than partial or fully meshed 
designs. For example, in a meshed network, the larger number of active tunnels per peer places more of 
a performance burden on the devices running IPSec, possibly requiring more CPU and memory 
resources. Furthermore, path selection and network resiliency are not as predictable when spokes are 
able to create direct spoke-to-spoke tunnels, as is supported by DMVPN. However, there may be network 
designs in which partial or fully meshed networks meet the needs of the network implementers; in these 
instances, Solution Two is a good fit.

The configuration of the encrypting devices becomes more complex when attempting to create a partial 
or full mesh network with Solution One. At a minimum, an additional access list must be created for 
each peer connection, as well as additional crypto map entries. In addition, the routing protocol (as is 
recommended in this design guide) must deal with many more adjacencies, nullifying the advantages of 
routing protocol efficiencies such as summarization and stub. 

For smaller deployments, a fully meshed or partially meshed topology may be possible, but the size of 
these deployments should be limited and carefully tested before roll out. Only limited testing of partial 
and full mesh topologies has been completed as part of scalability testing for this design guide.

Using a Routing Protocol across the VPN
This design recommends the use of a routing protocol to propagate routes from the head end to the 
branch offices. Using a routing protocol has several advantages over the current mechanisms in IPSec 
alone.

One key advantage of using a routing protocol is that the VPN receives the same level of benefit as doing 
so on a traditional network. This includes receiving information about the network connectivity available 
over a particular interface, topology information about a network, notification when that topology 
changes (such as when a link fails), and information about the status of remote peers.

Another advantage is that although there are alternatives to a routing protocol, most seek only to verify 
the “health” of the VPN device. With a routing protocol, it is additionally possible to verify that traffic 
is actually reaching its destination.
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Several routing protocols are candidates for operation over an IPSec VPN, including EIGRP and OSPF. 
Solution One as presented in this design guide uses EIGRP as the routing protocol, because EIGRP was 
used during the scalability tests conducted. EIGRP is recommended as the routing protocol to use 
because of its conservative utilization of router CPU and network bandwidth as well as its quick 
convergence times. EIGRP also provides a range of options for address summarization and default route 
propagation.

Routing protocols do increase the CPU utilization on a network device, and this impact must be taken 
into consideration when sizing those devices.

Route Propagation Strategy
There are a number of approaches to propagating routes from the head end to the branch offices. For the 
Solution One design, the recommended approach is for each head-end router to advertise a default route 
to each of the tunnels it terminates with a preferred cost for the primary path. With this in mind, each of 
the branch office routers must add a static host route for each of the head-end peer (primary and 
secondary) IP addresses, with a next hop destined for their respective ISP IP addresses.

For example, in a scenario where one branch has a primary and secondary tunnel to two head-end routers, 
the configuration excerpts shown below are used (for EIGRP as the routing protocol):

Head-end router (primary):

interface e0
ip address 1.1.1.2 255.255.255.0
!
router eigrp 1
redistribute static
!
ip route 0.0.0.0 0.0.0.0 1.1.1.1

Head-end router (secondary):

interface e0
ip address 1.1.1.3 255.255.255.0
!
router eigrp 1
redistribute static
!
ip route 0.0.0.0 0.0.0.0 1.1.1.1

Branch-site router:

router eigrp 1
!
ip route 1.1.1.2 255.255.255.255 2.2.2.2
ip route 1.1.1.3 255.255.255.255 2.2.2.2

In this example, the IP address 2.2.2.2 refers to the ISP provider network of the branch office. IP 
addresses 1.1.1.2 and 1.1.1.3 represent the two head-end routers. Note that the branch-site router 
configuration contains static routes for the two head-end routers, with the ISP as the next-hop router. 
Also, note that the head-end routers advertise a default route to 1.1.1.1.
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Solution Two (DMVPN)—Design Recommendations
This section details the recommendations specific to Solution Two (DMVPN). Solution Two is 
recommended when multicast traffic and routing protocol support is desirable, when dynamic 
spoke-to-spoke connectivity is needed, and when branch-site routers are dynamically addressed by the 
service provider. For deployments without these specific requirements, Solution Three may be used 
instead.

This section includes the following topics:

• Generic Route Encapsulation with mGRE Tunnels and NHRP, page 2-13

• Tunnel Protection, page 2-14

• High Availability and Resiliency, page 2-15

• Head End Load Distribution, page 2-15

• Path MTU Discovery, page 2-15

• Supported Network Topologies, page 2-15

Generic Route Encapsulation with mGRE Tunnels and NHRP
A multipoint GRE (mGRE) tunnel serves as a template for the creation of multiple GRE tunnels, either 
between a hub router and multiple spoke routers, or between spoke routers. An advantage of mGRE 
tunnel implementation is that the tunnel destination does not need to be specified, which is a benefit 
when dealing with dynamically-addressed spoke devices. Used in combination with NHRP, an 
mGRE-encapsulated interface works much the same as a Point-to-Multipoint Frame Relay interface with 
inverse ARP enabled. When the spoke router (NHRP client) boots, or comes online to the network, it 
registers its real (NBMA) address with the hub (NHRP server), which enables the mGRE interface to 
build a dynamic tunnel back to it, without having to know the tunnel destination via CLI configuration. 

Like GRE, mGRE encapsulation adds to the size of the original data packet. The protocol header for an 
mGRE packet is four bytes larger than that of a GRE packet. The additional four bytes constitute a tunnel 
key value, which is used to differentiate between different mGRE interfaces in the same router. In early 
versions of DMVPN, if there is no tunnel key, a router can only support one mGRE interface, 
corresponding to one IP network. With tunnel keys, a router can aggregate multiple groupings of 
hub-to-spoke tunnels, or multiple IP networks. As of Cisco IOS version 12.3(9.13)T (because of a 
regression issue, Cisco recommends using 12.3(12.01)T or 12.3(11)T3), it is possible to configure 
mGRE tunnel interfaces without tunnel keys and have them serve separate DMVPN groupings. To do 
this, each mGRE interface must reference a unique IP address or interface as its tunnel source. A router 
can also aggregate multiple groupings of encrypted tunnels by using tunnel keys.

NHRP, as defined in RFC 2332, is a Layer 2 address resolution protocol and cache. When a tunnel 
interface is an mGRE tunnel, NHRP tells the mGRE process where to send a packet (the IP next hop) to 
reach a certain address. Consider the following example from the hub router:

interface FastEthernet0/0
 ip address 172.16.0.1 255.255.255.0
!
interface Tunnel0
 description mGRE Template Tunnel
 ip address 10.0.0.1 255.255.255.0
 tunnel source FastEthernet0/0
!
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In this case, 10.0.0.1 is the router tunnel address, and 172.16.0.1 is the router NBMA address. NHRP 
tells the router querying it to map a tunnel IP address to an NBMA IP address. After the packet is 
encapsulated by the mGRE process, the IP destination address is the NBMA address, as shown in 
Figure 2-6.

Figure 2-6 NHRP and GRE

The NHRP cache can be populated with either static or dynamic entries. In DMVPN, all entries are 
added dynamically, via registration or resolution requests. The process begins by the spoke having an 
NHRP map configured pointing to the hub via the ip nhrp map x.x.x.x y.y.y.y command (x.x.x.x is the 
tunnel IP and y.y.y.y is the NBMA IP address of the hub/NHRP server). To participate in the NHRP 
registration process, all routers must belong to the same NHRP network, as configured by the ip nhrp 
network-id <id> command. The network-id defines an NHRP domain, and is unrelated to the tunnel key.

For the spoke routers to register with the hub, they are also configured with the hub NBMA address as 
their next-hop server, and they can authenticate with each other via a key string. After the hub has cached 
the tunnel and NBMA addresses of the spoke, it can now serve this information to other devices in the 
same NHRP network, for as long as the entry remains valid in its cache.

Tunnel Protection
The development of DMVPN has made router configurations simpler. In earlier versions of IPSec 
configurations, such as those shown in Solution One and Solution Three, dynamic or static crypto maps 
are configured via the router CLI. These crypto maps specify which IPSec transform set (encryption 
strength and Diffie-Hellman group) and perfect forward secrecy (PFS) group are used, and also specify 
a crypto access list, which defines interesting traffic for the crypto map. As of Cisco IOS Software 
Release 12.2(13)T, the concept of an IPSec profile exists. 

The IPSec profile shares most of the same commands with the crypto map configuration, but only a 
subset of the commands is needed in an IPSec profile. Only commands that pertain to an IPSec policy 
can be issued under an IPSec profile; there is no need to specify the IPSec peer address or the access 
control list (ACL) to match the packets that are to be encrypted.

The IPSec profile is associated with a tunnel interface with the tunnel protection ipsec profile 
<profile-name> command. With tunnel protection mode, IPSec encryption is performed after the GRE 
encapsulation has been added to the tunnel packet. The tunnel protection command can be used with 
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mGRE and Point-to-Point GRE Tunnels. With Point-to-Point GRE tunnels, the tunnel destination 
address is used as the IPSec peer address. With mGRE tunnels, multiple IPSec peers are possible; the 
corresponding NHRP-mapped NBMA destination addresses are used as the IPSec peer addresses.

High Availability and Resiliency
As with Solution One, in a DMVPN design, Cisco recommends that two tunnels, a primary and 
secondary, be configured between each branch-end device and the head ends. Under normal operating 
conditions, both the primary and secondary tunnels are established. The routing protocol, such as 
EIGRP, maintains both routes, with the secondary tunnel being configured as a less preferred route. This 
allows branch-end devices to converge to a secondary head end without user intervention, in the event 
of a failure at one head-end device.

Head End Load Distribution
As with Solution One, it is important to consider load balancing across multiple head-end devices, 
especially in the case of a head-end device failure. This design recommends that there be at least two 
tunnels configured between a branch device and the head-ends. The primary tunnel (the preferred route) 
should be configured (via a bandwidth statement) to carry traffic under normal circumstances. The 
preferred primary tunnels should be evenly divided among the head-end devices. The secondary tunnels 
for branches should be evenly spread among the remaining (surviving) head-end devices.

The same principles of tunnel aggregation and load distribution as discussed in Solution One are 
applicable to Solution Two. Scalability testing with DMVPN in contrast to a design with Point-to-Point 
GRE tunnels (as described in Solution One) indicates that, in terms of resources at the head-end or hub 
device, DMVPN offers performance improvements over Solution One. See Head End Devices, page 3-5 
for more information.

Path MTU Discovery
As with Solution One, the GRE tunnel MTU must be set to a value low enough to enable PMTUD to 
work as intended. The same recommendation (1400 bytes) as discussed in Solution One is applicable in 
Solution Two.

Supported Network Topologies
Using DMVPN, it is possible to create topologies that allow partially meshed and fully meshed 
networks, or to limit the topology to a pure hub-and-spoke design. 

Hub-and-Spoke

If desirable to limit the topology to a hub-and-spoke model, then the hubs are configured with mGRE 
tunnel interfaces and the spokes (or branch-end devices) are configured with Point-to-Point GRE 
tunnels. With a Point-to-Point GRE tunnel, the tunnel destination is configured via the CLI. In this 
model, the branch-end has two tunnel interfaces, each pointing to a different head-end router, and each 
tunnel interface belongs to a unique IP network. This design is usually referred to as dual hub-dual 
DMVPN, and is shown in Figure 2-7.
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Figure 2-7 Dual Hub-Dual DMVPN

In this design, the two head ends have IP connectivity to each other, but there is no requirement for any 
DMVPN connectivity between head ends.

Spoke-to-Spoke

If dynamic spoke-to-spoke tunnels are a design requirement, then the branch-end devices, as well as 
those at the head end, are configured with mGRE tunnel interfaces. All devices to which a spoke may 
initiate a spoke-to-spoke tunnel must be part of the same DMVPN; therefore, Cisco recommends 
maximizing the number of reachable devices using a dual hub-single DMVPN design, as shown in 
Figure 2-8.
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Figure 2-8 Dual Hub-Single DMVPN

In this design, the branch-end devices have a single mGRE tunnel interface, but have NHRP mapping 
statements and next-hop server definitions for each of the two head ends. When spoke-to-spoke tunnels 
are created, the two spokes do not become routing peers of each, but they do need to perform IKE 
authentication with each other before traffic can flow over the spoke-to-spoke tunnel. 

To avoid asymmetrical routing of the traffic between the hubs and the spokes (and the undesirable 
consequences of per-packet load balancing), the bandwidth (for EIGRP) and ip ospf cost (for OSPF) 
configurations can be tweaked on the hub routers, to determine which path (via Hub1 or Hub2) routers 
behind the hubs select to reach the networks at a spoke. A drawback to this approach, however, is that it 
is not possible to balance multiple spokes across two or more hubs; only one hub is used at a time. Also, 
there is a potential for asymmetrical routing to occur from the perspective of the spoke router, because 
it has only a single tunnel interface. A workaround is to use the distance command under router ospf 1 
on the spokes, as in the following example: 

router ospf 1
 ...
 distance 111 10.0.0.2 0.0.0.0 1
access-list 1 permit any

Given unequal administrative distances, the spoke routers prefer the path with the lower administrative 
distance, and choose the path with the higher administrative distance only if the preferred router 
becomes unavailable. A side-effect of this approach is that only the preferred hub (the one with the lower 
administrative distance) is used, even if the other hub is advertising the same route with a lower metric.

With EIGRP as a routing protocol, there is more flexibility in a dual hub-single DMVPN to provide 
resiliency, avoid asymmetrical routing, and allow load balancing of multiple spokes across two or more 
hubs. One approach uses the offset list command. To implement this, begin by dividing the spokes into 
as many groups as there are hub routers. Identify the networks behind the spokes in group 1 in an ACL 
on Hub2, the spokes in group 2 by an ACL on Hub1, and so on. For the purpose of the following example, 
the ACLs are called “ACL-net-gr1” and “ACL-net-gr2”:

192.168.1.0/24 192.168.2.0/24 192.168.<n>.0/24
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Hub1:

router eigrp 1
 ...
 offset-list ACL-net-gr2 in 256000 tunnel0
 offset-list ACL-net-gr2 out 256000 tunnel0

Hub2:

router eigrp 1
 ...
 offset-list ACL-net-gr1 in 256000 tunnel0
 offset-list ACL-net-gr1 out 256000 tunnel0

The offset-list command applies an offset value of 256000 to the delay component of networks in the 
given ACL. The net effect is that spokes in group 1 prefer Hub 1, and spokes in group 2 prefer Hub 2, 
which permits load balancing of the spokes across the two hubs while avoiding asymmetrical routing.

In the dual hub-single DMVPN configuration, intra-hub communications must flow over mGRE tunnels 
built between the hubs. This means that the hubs are NHRP clients of each other, and are defined as 
next-hop servers of each other. The NHRP relationship is required so that the hubs can be routing 
neighbors of each other. 

If the network design grows beyond two hubs, NHRP maps between hubs are bi-directional; for instance, 
in a design with three hubs, the NHRP maps are as follows:

1->2, 2->1, 2->3, 3->2, 3->1, 1->3 

The next-hop server definitions are done in a daisy-chain, as follows:

1->2, 2->3, 3->1 

This is shown in Figure 2-9.
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Figure 2-9 Intra-hub NHRP and NHS in Multi-hub—Single DMVPN

Spoke-to-Spoke Design Considerations

In general, the partially or fully meshed topology is a less predictable, less conservative design. It is 
possible that the bandwidth of the spoke device, or the spoke device itself, may be overrun by a large 
number of other devices attempting to setup tunnels to it. Also, path selection and network resiliency are 
not as predictable as in a hub-and-spoke topology, especially if the medium of connection is the public 
Internet. When designing a DMVPN that supports spoke-to-spoke tunnels, keep in mind the following 
good design principles:

• Design the network with adequate bandwidth for the anticipated application load.

• Select platforms with sufficient resources for the anticipated network load.

• Balance the percentage of hub-to-spoke and spoke-to-spoke flows to a reasonable level; the design 
recommendation is 80 percent hub-to-spoke and 20 percent spoke-to-spoke.

• Set user expectations of the response time, and even availability, of the link appropriately.
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Solution Three (IPSec with DPD, RRI, and HSRP)—Design 
Recommendations

This section includes the following topics:

• Alternatives to Using a Routing Protocol, page 2-20

• Dead Peer Detection, page 2-20

• Reverse Route Injection, page 2-20

• Dynamic Crypto Maps, page 2-20

• Hot Standby Router Protocol, page 2-21

• Solution Three Limitation—Tunnel Initiation Not Possible from Head Ends, page 2-22

• Number of Tunnels per Device and Load Distribution, page 2-22

Often a VPN does not require multi-protocol or multicast data. In this case, an IPSec VPN can achieve 
a higher throughput without the use of GRE because the routers configured for the VPN do not need to 
perform the GRE encapsulation, and the packets themselves do not contain the usual 24-byte GRE 
overhead. As a rule of thumb, the CPU utilization on head-end routers is about ten percent less when 
GRE is not configured.

Alternatives to Using a Routing Protocol
A routing protocol provides several vital features when deployed over a network. These include peer 
state detection, optimal routing, and the ability to facilitate alternate routes in the event of a failure.

Dead Peer Detection
Dead Peer Detection (DPD) is a relatively new Cisco IOS feature that is actually an enhancement of the 
IKE keepalives feature. When DPD has not received traffic from an IPSec peer during a specified 
configurable period, DPD sends a hello message to the IPSec peer. If normal IPSec traffic is received 
from a peer and decrypted correctly, then that peer is assumed to be alive, no hello message is sent, and 
the DPD counter for that peer is reset. This results in lower CPU utilization than that which would have 
occurred with IKE keepalives.

Reverse Route Injection
Another recent IPSec feature addition to Cisco IOS is Reverse Route Injection (RRI). RRI functions by 
taking the information derived from the negotiated IPSec SAs and creating a static route to the networks 
contained in those SAs. Route redistribution can then take place between these “static” routes and any 
routing protocol configured on the head-end router.

Dynamic Crypto Maps
Rather than pre-defining all the IPSec peers, another option is to create dynamic crypto maps. Dynamic 
crypto maps allow an IPSec connection between two peers when one of the peers, usually the central site 
peer, does not have the complete configuration necessary to complete an IPSec negotiation with a remote 
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peer. This situation can occur when the remote peer has its IP address dynamically assigned, as in the 
case of a residential class service connection such as a cable or xDSL connection. Because the remote 
peer IP address is unknown, it cannot be preconfigured into the central site device.

IKE is required for authentication with dynamic crypto maps. The IKE authentication completes based 
on an identity other than the remote IP address, such as the fully qualified domain name (FQDN) of the 
peer, and information from the IKE session is used to complete the missing information in the dynamic 
crypto map configuration.

Hot Standby Router Protocol
IPSec has also been enhanced with Hot Standby Router Protocol (HSRP). This feature enables IPSec to 
use the standby group address as its IPSec peer address. If the current owner of the HSRP group fails, 
that address transfers over to the secondary standby router. HSRP works between the active and standby 
routers in either stateless or stateful modes.

Stateless Failover

In stateless failover mode, no IPSec or IKE SA state information is transferred during failure. A remote 
peer router configured with an HSRP group address as an IPSec peer must renegotiate its IKE SAs and 
IPSec SAs before any subsequent traffic transmission. Stateless operation is supported with all platforms 
and ISAKMP authentication types.

Stateful Failover

IPSec stateful failover (VPN High Availability) allows the head-end routers to share information in the 
SA database with each other. In the event of a head-end device failure, as detected by HSRP, the spoke 
router continues the same IPSec SA with the backup head end without the need to create a new SA. This 
greatly reduces failover time and the amount of re-keying required in the event of a head end failure. 

Cisco has developed different versions of stateful failover in conjunction with different platforms. The 
feature was initially released to work with State Synchronization Protocol on the Cisco 7200 VXR Series 
Routers with NPE-400 and the Catalyst 6500/7600 Series Routers with the VPN Services Module 
(VPNSM). Cisco IOS Software Release 12.2(11)YX or later is required for use with the Cisco 7200 
VXR, and Catalyst IOS Software Release 12.2(14)SY or later is required for use with the Catalyst 
6500/7600 and VPNSM.

Note Further information about this implementation is available at the following URL: 
http://www.cisco.com/en/US/partner/products/sw/iosswrel/ps5012/products_feature_guide09186a0080
116d4c.html

A newer version of this feature using Stateful Switchover (SSO) with HSRP was developed for the Cisco 
7200 VXR with NPE-G1, and platforms using the Advanced Integration Module (AIM)-VPN/HPII 
encryption module. Cisco IOS Software Release 12.3(11)T or later is required for this version of VPN 
High Availability. 

Note Further information on this implementation is available at the following URL: 
http://www.cisco.com/en/US/partner/products/sw/iosswrel/ps5207/products_feature_guide09186a0080
2d03f2.html
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These two versions of this feature cannot be used together. In both cases, the only form of ISAKMP 
authentication supported is pre-shared keys.

Solution Three Limitation—Tunnel Initiation Not Possible from Head Ends
A limitation exists with Solution Three with regard to tunnel initiation. Because of the use of dynamic 
tunnels, the IPSec connection can only be initiated by the branch router. Because the head-end devices 
use dynamic crypto maps, they do not have all the information necessary to create an IPSec SA by 
themselves. This is of concern when traffic forwarding is required from a central site to a remote site 
without the remote site initiating the connection. If the IPSec tunnel initiation from the head end is 
required, static crypto maps should be used.

Number of Tunnels per Device and Load Distribution
The number of tunnels required for each head-end device should be scaled to the overall size of the 
network in which the VPN solution is being deployed. See Head End Devices, page 3-5 for more 
information. 

In addition, the normal load from a number of branch sites may be distributed across two or more 
head-end devices, if stateless failover is employed. This is accomplished by configuring multiple 
standby groups; one group for each group of branch devices. By using HSRP in this manner, a number 
of remotes may be evenly divided among a number of head-end devices for load sharing during normal 
operation. During a failure event, only the branch devices connected as primary to the failed HSRP group 
owner are subject to re-negotiation of the IPSec SAs, resulting in enhanced failover performance.

If stateful failover is configured, it is not possible to distribute groups of branch sites by HSRP groups 
across different head-end devices. In stateful failover, one head-end router is “active” (terminates all 
ISAKMP and IPSec SAs) and the other is completely dedicated to “standby” operations.

Head end scalability testing did not include an exhaustive evaluation of the maximum number of tunnels 
that can be terminated to head-end devices. In addition, scalability testing of branch site devices was 
performed with two tunnels per branch device. This did not include exhaustive testing of the number of 
tunnels these different platforms can support.

Comparing Failover and Convergence Performance
Network performance in the event of a failure is a primary concern during an IPSec VPN deployment.

This section includes the following topics:

• Solution One—Failover and Convergence Performance, page 2-22

• Solution Two—Failover and Convergence Performance, page 2-25

• Solution Three—Failover and Convergence Performance, page 2-26

Solution One—Failover and Convergence Performance
Each customer may have different convergence time requirements. The design principles in this guide 
were used to perform a scalability test with up to 480 branch offices aggregated to two head-end devices.
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The test was performed by powering off one of the head-end devices to simulate a complete failure. In 
this test, the network fully converged after a maximum of approximately 32 seconds. The starting and 
failover traffic/tunnel aggregation conditions are shown in Table 2-1.

The same test was then performed with 240 branch offices aggregated to two head-end devices. All 120 
branches from the failed head end successfully failed over to the single surviving head end. In this test, 
the network fully converged after approximately 22 seconds for the 7200 NPE-400 and 24–26 seconds 
for the 7140 and 7200 NPE-300. 

The starting and failover traffic/tunnel aggregation conditions are shown in Table 2-2:

Table 2-1 Three Head End Failover Scenarios IPSec/GRE

Head End 1 Head End 2 Head End 3 

Cisco 7140

Starting condition 23 Mbps

80 branches

33% CPU

23 Mbps

80 branches

33% CPU

37 Mbps

80 branches

40% CPU

During failover Failure 33 Mbps

120 branches

48% CPU

48 Mbps

120 branches

58% CPU

Cisco 7200 VXR NPE-300

Starting condition 22 Mbps

80 branches

33% CPU

22 Mbps

80 branches

37% CPU

37 Mbps

80 branches

38% CPU

During failover Failure 33 Mbps

120 branches

49% CPU

49 Mbps

120 branches

58% CPU

Cisco 7200 VXR NPE-400

Starting condition 27 Mbps

80 branches

32% CPU

28 Mbps

80 branches

32% CPU

44 Mbps

80 branches

37% CPU

During failover Failure 41 Mbps

120 branches

46% CPU

56 Mbps

120 branches

50% CPU

Table 2-2 Two head end Failover Scenario IPSec/GRE

Head End 1 Head End 2 

Cisco 7140

Starting condition 17 Mbps

120 branches

28% CPU

16 Mbps

120 branches

30% CPU
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In both scenarios, the failed head-end device was then powered back on, resulting in the network 
re-converging in less than two seconds. The IPSec tunnels re-established a few at a time as their 
corresponding SAs were renegotiated. The last IPSec tunnels re-established connectivity after 1.5 to 2 
minutes.

Subsequent failover testing has been performed with the Cisco 3745 router and AIM II as head-end 
devices and with the 7200 VXR with the NPE-G1 processor engine and the VPN Accelerator Module 
(VAM) as the encryption accelerator, and up to 500 tunnels. The complete failover event lasted 32 
seconds after the head-end device was failed. During the re-convergence, when the failed head end was 
restored, the convergence of each branch device took approximately two seconds each, with the total 
time for re-convergence at about 5.5 minutes. These results are presented in Table 2-3 along with the 
resulting CPU utilization percentages:

During failover Failure 33 Mbps

240 branches

58% CPU

Cisco 7200 VXR NPE-300

Starting condition 18 Mbps

120 branches

28% CPU

17 Mbps

120 branches

28% CPU

During failover Failure 35 Mbps

240 branches

52% CPU

Cisco 7200 VXR NPE-400

Starting condition 21 Mbps

120 branches

28% CPU

21 Mbps

120 branches

25% CPU

During failover Failure 42 Mbps

240 branches

44% CPU

Table 2-2 Two head end Failover Scenario IPSec/GRE

Head End 1 Head End 2 

Table 2-3 Two Head End Failover Scenario Subsequent Testing

Head End 1 Head End 2 

Cisco 3745 IOS ver. 12.2(13)T IOS ver. 12.2(13)T

Starting condition 4.2 Mbps

30 branches

33% CPU

4.4 Mbps

30 branches

34% CPU
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After a failure, the total traffic levels through the surviving router may be somewhat lower that the total 
traffic through the head ends with all of them up. This is because of the normal TCP back off process.

Solution Two—Failover and Convergence Performance
Failover and convergence testing has not been performed with Solution Two. However, because DMVPN 
is GRE-based and uses a routing protocol for convergence, there is no reason to believe that results with 
DMVPN configurations would be dramatically different from the results shown for Solution One. In fact, 
because testing comparing DMVPN with Point-to-Point GRE on the various head-end platforms shows 
that DMVPN offers performance improvements over Solution One, it is safe to assume that the results 
shown for failover and convergence in Solution One are conservative for Solution Two.

During failover Failure 8.8 Mbps

60 branches 

73% CPU

Cisco 3745 IOS ver. 12.2(13)T IOS ver. 12.2(13)T

Starting condition 3.6 Mbps

60 branches

37% CPU

3.8 Mbps

60 branches

45% CPU

During failover Failure 7.7 Mbps

120 branches

80% CPU

Cisco 7200 VXR NPE-G1 IOS ver. 12.2(13)S IOS ver. 12.2(13)S

Starting condition 45.9 Mbps

125 branches

39% CPU

45.7 Mbps

125 branches

38% CPU

During failover Failure 79.8 Mbps

250 branches

77% CPU

Cisco 7200 VXR NPE-G1 IOS ver. 12.2(13)S IOS ver. 12.2(13)S

Starting condition 37.5 Mbps

250 branches

43% CPU

35.6 Mbps

250 branches

43% CPU

During failover Failure 45.7 Mbps

500 branches

84% CPU

Table 2-3 Two Head End Failover Scenario Subsequent Testing (continued)

Head End 1 Head End 2 
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Solution Three—Failover and Convergence Performance
Exhaustive failover and convergence testing has not been performed with Solution Three. While this 
testing is planned, several considerations must be taken into account with this solution. In addition to the 
time needed for the HSRP process to discover that its primary router has failed, because there is only a 
single IPSec tunnel established, IPSec must re-negotiate IKE and IPSec SAs with the standby router, 
which now “owns” the standby group address. For a network with a large number of peers, this process 
can take several minutes. This requirement is not necessary when IPSec stateful SA failover can be used.

Testing results are shown in Table 2-4.

After completion of the test, the peers renegotiated SAs with their primary head end via the HSRP 
preempt command. Both the failover and renegotiation processes took approximately 3.5 minutes to 
complete with the 250 tunnel scenario and 5.5 minutes to complete with the 500 tunnel test.

Additional Design Considerations
This section describes additional design considerations when deploying a site-to-site VPN solution.

It includes the following topics:

• Security, page 2-27

• Split Tunneling, page 2-27

• Multicast, page 2-27

• IPSec Interactions with Other Networking Functions, page 2-27

• Service Provider Dependencies, page 2-28

Table 2-4 Two Head End Failover, IPSec/DPD/RRI

Head End 1 Head End 2 

Cisco 7200 VXR NPE-G1 IOS ver. 12.2(13)S IOS ver. 12.2(13)S

Starting condition 81 Mbps

250 branches

64% CPU

0 Mbps

0 branches 

0% CPU

During failover Failure 81 Mbps

250 branches

64% CPU

Cisco 7200 VXR NPE-G1 IOS ver. 12.2(13)S IOS ver. 12.2(13)S

Starting condition 79 Mbps

500 branches

68% CPU

0 Mbps

0 branches

0% CPU

During failover Failure 79 Mbps

500 branches

68% CPU
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• Management, page 2-29

Security
In planning for deployment of a site-to-site VPN topology, it is necessary to consider the integration of 
enterprise network security functions. Various enterprise security components complement and enhance 
the VPN solution.

For more information on how to integrate these essential security components, see the Cisco SAFE 
security blueprint and seminar series. Cisco SAFE documentation can be found at the following URL: 
http://www.cisco.com/go/safe.

Split Tunneling
Split tunneling is the process by which packets being transmitted from a site can be either protected by 
IPSec or unprotected, depending upon their destination. When split tunneling is configured for a branch 
site, that site must be protected by a stateful firewall. 

At this time, split tunneling has not been addressed within this design.

Multicast
The popularity of multimedia applications such as video has led many network administrators to support 
multicast traffic on their networks. VPNs can also support these applications.

IPSec supports only tunneling of unicast IP traffic, so it is necessary to implement GRE in conjunction 
with IPSec to support multicast. See section Solution One (IPSec with GRE)—Design 
Recommendations, page 2-7 or Solution Two (DMVPN)—Design Recommendations, page 2-13 for 
options for supporting multicast traffic over a VPN. Solution One is recommended when multi-protocol 
and/or multicast support is needed; Solution Two is recommended when multicast support is needed. 
Both solutions also support routing protocols. For deployments without these specific requirements, 
Solution Three may be used instead. 

Multicast traffic is not currently supported by most firewalls. This would require the termination of the 
IPSec tunnels on the inside interface of the firewall.

IPSec Interactions with Other Networking Functions
Because IPSec hides the packet and increases the packet size, interactions with other networking 
functions must also be taken into consideration. The following sections discuss various aspects to 
consider when deploying site-to-site IPSec-based VPNs.

Routing Protocols

All IP routing protocols use either broadcast or multicast as a method of transmitting routing table 
information. Because IPSec does not support either broadcast or multicast, this design guide 
recommends using GRE as a tunneling method to overcome this limitation. See section Solution One 
(IPSec with GRE)—Design Recommendations, page 2-7 and section Solution Two (DMVPN)—Design 
Recommendations, page 2-13. These sections detail the recommendations specific to the use of IPSec in 
combination with GRE. 
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Solution One is the recommendation when multi-protocol or multicast support is needed, or when 
routing protocol support is necessary. Solution Two is recommended when multicast and routing 
protocol support is needed. For deployments without these specific requirements, Solution Three may 
be used instead. See section Using a Routing Protocol across the VPN, page 2-11 for more information 
on running a routing protocol across a VPN.

Network Address Translation and Port Address Translation

Although Network Address Translation (NAT) and Port Address Translation (PAT) can result in an added 
layer of security and address conservation, they both present challenges to the implementation of an 
IPSec VPN. ISAKMP relies on an individual IP address per peer for proper operation. PAT works by 
masquerading multiple peers behind a single IP address.

IPSec NAT Traversal (NAT-T) introduces support for IPSec traffic to travel through NAT or PAT points 
in the network by encapsulating IPSec packets in a UDP wrapper, which allows the packets to travel 
through NAT devices. NAT-T was first introduced in Cisco IOS Software Release 12.2(13)T, and is 
auto-detected by VPN devices. There are no configuration steps for a Cisco IOS router running this 
release or later. If both VPN devices are NAT-T capable and a NAT device lies in the crypto path, NAT-T 
is auto-detected and auto-negotiated.

Dynamic Host Configuration Protocol

For a host at a remote site to be able to use a Dynamic Host Configuration Protocol (DHCP) server over 
an IPSec tunnel at a central site, an IP helper address must be configured on the router interface 
associated with the host. 

One drawback of this approach is that if connectivity to the central site is lost, a host at a remote site 
may not receive an IP address. This can cause the host to be unable to communicate with other hosts on 
its local network. 

A Cisco IOS router may also be configured to act as a standalone DHCP server. 

Service Provider Dependencies
VPNs inherently rely on one or more service providers to provide Internet service to the head end and 
branch offices to deploy the network. Choosing a service provider is thus a critical element of deploying 
a VPN. Many factors have to be considered including cost, services available, reliability, and the 
expected geographical coverage of the customer VPN. 

At a minimum, the enterprise should have a service level agreement (SLA) with the service provider that 
outlines the critical service elements of their VPN. These factors include availability, bandwidth, and 
latency.

When an enterprise must use multiple service providers to cover their branch locations, obtaining the 
desired level of end-to-end VPN service can be more complex and problematic. This can be especially 
critical in the case where the customer has mission-critical applications that are delay-sensitive. Whether 
the customer wants to run latency-sensitive applications such as voice and video over IP across the VPN 
in the future must also be considered. For this reason, Cisco recommends seeking an SLA with a single 
service provider that can guarantee a level of end-to-end service for the enterprise locations.

Another issue is that some Internet service providers for DSL and cable services implement policing of 
traffic for residential class service. This means that protocols such as IPSec may be blocked unless there 
is a subscription to business class service. For more information about residential class services and 
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other specifics of teleworker designs, see the Business Ready Teleworker SRND at the following URL: 
http://www.cisco.com/application/pdf/en/us/guest/netsol/ns241/c649/ccmigration_09186a00801ea79d.
pdf

Management
Cisco coordinates all of its VPN products through management systems that provide such status 
information as device availability and throughput with products such as VPN/Security Management 
Solution (VMS) and IP Solution Center (ISC).

For more information on how to implement network management over IPSec tunnels, see the Cisco 
SAFE security blueprint and seminar series. Cisco SAFE documentation can be found at the following 
URL: http://www.cisco.com/go/safe.
2-29
Data-only Site-to-Site IPSec VPN Design Guide

OL-7281-01

http://www.cisco.com/application/pdf/en/us/guest/netsol/ns241/c649/ccmigration_09186a00801ea79d.pdf


 

Chapter 2      Selecting a Site-to-Site VPN Solution
  Additional Design Considerations
2-30
Data-only Site-to-Site IPSec VPN Design Guide

OL-7281-01



 

Data-on
OL-7281-01
C H A P T E R 3

Selecting Solution Components

This chapter presents the steps to selecting Cisco products for a deployable VPN solution, starting with 
sizing the head end, and then choosing Cisco products that can be deployed for head-end devices. It 
concludes with product sizing and selection information for branch-end devices.

This chapter includes the following topics:

• Scalability Testing Methodology, page 3-1

• Subsequent Testing, page 3-2

• Deploying Hardware-Accelerated Encryption, page 3-4

• Head End Devices, page 3-5

• Branch Site Devices, page 3-11

• Software Releases Evaluated, page 3-18

Scalability Testing Methodology
This section describes how the performance data presented in the subsequent section was derived for 
each product.

As shown in the diagram in Scalability Test Bed Network Diagram, page A-1, the scalability test bed 
initially included 240 branch offices aggregated to three head-end devices (aggregation to two head ends 
was also tested). The head ends consisted of the Cisco 7100 and 7200 series VPN router products (see 
Head End Devices, page 3-5 for exact models tested). Later testing scaled the branch offices to 1040 
devices. The branch offices routers consisted of Cisco VPN router products from the 800, 1700, 2600, 
and 3600 series (see Branch Site Devices, page 3-11 for exact models tested). Later testing incorporated 
the Cisco Integrated Services Router (ISR) models: 1800, 2800, and 3800 series. 

Head-end products were evaluated with hardware-accelerated encryption installed, while, initially, 
branch products were evaluated with both software-based encryption and hardware-accelerated 
encryption. 3DES was selected as the encryption standard and SHA-1 as the hash method. In later 
testing, for example with the ISR models, tests compared router performance with the integrated crypto 
accelerator with that derived with the AIM encryption modules.

For head end testing, each branch router was provisioned with two IPSec/GRE tunnels (primary and 
secondary) back to two different head ends. EIGRP was configured as the routing protocol to distribute 
routes from the head ends to the branches. The testing was conducted with a fully summarized network 
configuration.
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Traffic flows were then established using the NetIQ ChariotTM testing tool. The mix of traffic was 
approximately 35 percent UDP and 65 percent TCP, with packet sizes of 64 bytes (RTP), 100 bytes 
(DNS), and 1400 bytes (FTP). Traffic rates were increased to find the throughput points on each product 
type where the CPU utilization reached 50 percent for head ends, and 65 percent for branch products, 
without packet loss.

An initial finding was the effect of IPSec packet fragmentation on the throughput of the head-end devices 
(see Minimizing Packet Fragmentation, page 2-5 for more information on the performance impact and 
mitigation strategies). Therefore, the testing was conducted both with fragmentation occurring in the 
network as well as with no fragmentation (MTU was set to 1400 on the test endpoints). In later tests, 
testing with fragmentation occurring in the network was discontinued, because it became a design 
recommendation to avoid such fragmentation.

Individual product throughput performance data is presented in Cisco VPN Routers for Head Ends, page 
3-8 for head-end products, and Cisco VPN Routers for Branch Sites, page 3-12 for branch products.

In addition to throughput testing, failover testing was also conducted. See Comparing Failover and 
Convergence Performance, page 2-22 for more information on the failover test scenarios.

All scalability testing for this design guide revision was obtained using IPSec tunnel mode in Solutions 
One and Three; therefore, the throughput results may differ in transport mode. Solution Two, DMVPN, 
is optimized by the use of transport mode, so all test results for DMVPN uses IPSec transport mode.

Subsequent Testing
This section includes the following topics:

• New Traffic Mix, page 3-2

• Tunnel Quantity Affects Throughput, page 3-3

• GRE Encapsulation Affects Throughput, page 3-3

• Routing Protocols Affect Throughput, page 3-3

• How the Test Results are Presented, page 3-3

To speed solution testing and to provide accurate information in a more timely fashion, the site-to-site 
VPN testing was combined with Voice and Video Enabled IPSec VPN (V3PN) solution testing. This 
entailed changing the traffic mix to more closely emulate VoIP traffic. Because of the VoIP traffic in the 
V3PN solution, this solution uses a slightly different traffic profile than what would normally be 
encountered in a data-only enterprise network. These tests also yielded results that are more conservative 
than what would ordinarily be obtained with the previous testing methods. Therefore, a network carrying 
data-only traffic has a larger average packet size than what was used in the testing, and routers in this 
network achieve better performance.

New Traffic Mix

Enterprise traffic was simulated by using a variety of traffic mixes and packet sizes. IMIX is available 
in many different forms. For V3PN testing, samples were taken from several enterprise verticals; these 
include health care and the insurance industry. Profiles were created to simulate these packet mixes with 
the Chariot test tool used by Cisco labs. The flows generated match very closely the traffic patterns found 
in the sampled enterprise networks. 
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The single change to these flows in the current and future rounds of testing are the inclusion of simulated 
VoIP flows. Although these are not actual VoIP flows, periodic checks were made with real VoIP flows 
to ensure that the results obtained are accurate. The VoIP flows are characterized by smaller packet sizes, 
which lower the overall average packet size handled by each router. The greater proportion of smaller 
packets causes a higher CPU utilization on the routers performing encryption.

The most noticeable impact of this new traffic profile is that results shown here are conservative for a 
data-only network. An increase in the number of small packets in the traffic mix drives the overall 
packets per second (pps) rate up, which in turn drives the router CPU higher. Cisco attempted to test to 
three different CPU utilization levels: 50 percent, 65 percent, and 80 percent. With the new traffic mix, 
these CPU utilization levels are reached earlier than they normally would be because of the higher pps 
rate.

Tunnel Quantity Affects Throughput
As tunnel quantities are increased, the overall throughput tends to decrease. When a router receives a 
packet from a different peer than the one whose packet was just decrypted, a lookup based on the security 
parameters index of the new packet must be performed. The new transform set information and 
negotiated key of the packet is then loaded into the hardware decryption engine for processing. Having 
traffic flowing on a larger numbers of SAs tends to negatively affect throughput performance. In the test 
results shown, head-end devices have multiple tunnels established, with traffic distributed as evenly as 
possible across each active tunnel. When it was not possible to distribute the traffic evenly, it is noted. 
In test results for Solutions One and Three, branch-end devices are shown with either one or two tunnels 
configured.

GRE Encapsulation Affects Throughput
The configuration of GRE negatively affected router encryption throughput. In addition to the headers 
that are added to the beginning of each packet, these headers also must be encrypted. The GRE 
encapsulation process itself affects total CPU utilization, which is approximately ten percent higher if 
GRE encapsulation has been configured than with IPSec alone.

Routing Protocols Affect Throughput
Throughput is also affected by running a routing protocol. Router processing of keepalives and the 
maintenance of a routing table uses a certain amount of CPU time, which varies with the number of 
routing peers and the size of the routing table. This guide attempts to conclude the number of permissible 
routing peers based on a safe number for the total network size.

How the Test Results are Presented
The targeted CPU utilization for a router deployment is always the subject of debate. This guide attempts 
to provide a representative range of CPU utilizations on the higher side of a normal network deployment. 
These utilizations are 50 percent, 65 percent, and 80 percent. While the high number (80 percent) is not 
recommended during normal operation, this number is provided to enable an engineer to see what traffic 
levels can be handled by a router in a failover scenario.
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Deploying Hardware-Accelerated Encryption
This section includes the following topics:

• Head End Encryption Acceleration Options, page 3-4

• Hardware Encryption Acceleration Options for 2600, 3600, and 3700 Routers, page 3-4

The scalability testing performed as part of the VPN solution development indicates a strong need for 
hardware-accelerated encryption to achieve predictable performance results. For head-end devices, all 
throughput results presented in this design guide, and the recommended architecture, assume that 
hardware-acceleration is implemented.

For branch-end devices, both software-based encryption and hardware-accelerated encryption were 
evaluated. In the case of software-based encryption, throughput results were much lower than with 
hardware-accelerated encryption (up to an 80 percent decrease in performance).

For these reasons, Cisco strongly recommends hardware acceleration in all devices performing 
encryption. This is especially true in the case of the following:

• 3DES encryption is being implemented

• Significant data throughput requirements exist

• Multi-service applications, such as VoIP, are to be run over the VPN

Head End Encryption Acceleration Options
Cisco has different names for the acceleration modules of the 7200 and 7100 families. The Integrated 
Services Adapter (ISA) may be used on the 7100 or 7200. The Integrated Services Modules (ISM) may 
be used on the 7100. These offer comparable performance. Multiple cards (dual ISA on a 7200, 
ISM+ISA on 7100) can be used to increase encryption throughput. 

The Cisco VPN Acceleration Module (VAM), and its successor the VAM2, are additional 
high-performance VPN encryption options. These modules, in the form of a port adapter (PA), are 
available for the 7200 series. They can also be used in tandem (two VAMs per chassis) to increase 
performance. When dual VAMs are used, performance increases when they are installed in the same 
chassis bus (for instance, in Slots 1 and 3, or in Slots 3 and 5). In the Cisco switching family, the VPNSM 
is available for the Catalyst 6500 and Cisco 7600 family.

Hardware Encryption Acceleration Options for 2600, 3600, and 3700 Routers
The hardware acceleration options for the 2600, 3600, and 3700 series can be somewhat confusing. 
Table 3-1 shows the options available for some of these platforms:

Table 3-1 AIM Options

AIM-BP AIM-MP AIM-EP AIM-HP AIM-EPII AIM-HPII

Cisco 26xx X X

Cisco 26xx-XM X X

Cisco 3620/40 X

Cisco 2691 X X

Cisco 3660 X
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The recommended deployment for the 1700 series with these solutions also includes hardware 
acceleration. The 1700s are configurable with the VPN module for encryption acceleration.

The Cisco 800 series of routers that are recommended have built-in hardware acceleration. These models 
are the 831 dual Ethernet, the 836 ADSL over ISDN, and the 837 ADSL router. Other models of the 800 
series without hardware encryption are no longer recommended for these applications.

The ISR models are configurable to use either an integrated encryption module or a separately-purchased 
AIM. The AIM option for the 1800 series is an AIM-VPN/BPII-PLUS, and the AIM option for the 2800 
series is an AIM-VPN/EPII-PLUS. The 3800 series can be configured with either the 
AIM-VPN/EPII-PLUS or the AIM-VPN/HPII-PLUS.

See Head End Devices, page 3-5 and Branch Site Devices, page 3-11 for more detailed performance data 
that supports these recommendations.

Head End Devices
This section includes the following topics:

• Sizing the Head End, page 3-6

• Cisco VPN Routers for Head Ends, page 3-8

• Head End Products for Solution Two, page 3-9

• Head End Products for Solution Three, page 3-9

• Other Cisco Products for the Head End, page 3-10

• Cisco PIX VPN Limitations, page 3-11

In Solutions One and Two, the head-end devices are responsible for the following:

• Originating/terminating IPSec encapsulated GRE tunnels from the branch sites

• Running a routing protocol inside GRE tunnels to advertise internal routes to branches

• Providing redundancy to eliminate the possibility of a single point of failure

In Solution Two, the head-end devices are responsible for the following:

• Serving as an NHRP cache and server to the branch sites

• Serving as a next-hop server, both to the branch sites and to other head ends

In Solution Three, the head-end devices are responsible for the following:

• Originating/terminating ISAKMP and IPSec SAs from the branch sites

• Sending/receiving IKE keepalives to verify the state of the SAs to the branches

• Installing routes to the branch networks via RRI, replacing the need for a dynamic routing protocol

The next sections identify factors to take into account in sizing the head-end devices or sites.

Cisco 3725 X X

Cisco 3745 X X

Table 3-1 AIM Options (continued)

AIM-BP AIM-MP AIM-EP AIM-HP AIM-EPII AIM-HPII
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Sizing the Head End
It is important to size the head end correctly before choosing the devices to deploy. This ensures that the 
overall network can support the intended (and possibly future) traffic profiles that the enterprise desires 
to run over the VPN. 

The following two critical factors must be considered when sizing the head end:

• How many branch offices need to be connected to the head end? This information provides the 
number of primary tunnels requiring aggregation.

• What is the expected traffic profile, including the average pps and bits per second (bps) throughput 
rates for each branch office? This information provides the aggregated data throughput required 
across the VPN.

Either or both of these factors can be the limiting factor in sizing the head end; therefore, both must be 
considered together.

The decision flow shown in Figure 3-1 can be applied to size the head end.

Figure 3-1 Head End Sizing Decision Flow

This design assumes a level of redundancy at the head end to handle a failover scenario.

In Solution One (IPSec with GRE), the total number of tunnels per head-end device (assuming a Cisco 
7200 VXR with NPE-G1 and VAM or VAM2) should be kept below 500. In Solution Two (DMVPN), 
the total number of branch ends aggregated on a head-end device should be limited to 700, with 350 
aggregated on each of two mGRE interfaces; this, again, assumes a Cisco 7200 VXR with NPE-G1 and 
VAM or VAM2. In Solution Three, scalability testing was conducted for up to 1040 tunnels, with the 
same head-end device and dual VAM2s. All testing assumes an IP unicast, fully summarized network 
configuration. 

Based on the number of branch offices, the required number of head-end devices, C(t), can be sized with 
the following algorithm:

N = total number of branch offices
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T = total number of tunnels = N x 2 (for primary and secondary tunnels)

Y = total number of tunnels recommended per solution (500, 750, 1040)

C(t) = (T /Y) rounded up to next full integer + 1 (for resiliency)

For example, an enterprise with 950 branch offices planning a Solution One design would require five 
head-end devices, as follows:

N = 950

T = 1900

C(t) = 1900/500 rounded up + 1 = 5

The next step is to obtain traffic profile data from the customer that indicates expected average 
throughput (pps and bps) for each branch office and head-end device.

The aggregate throughput is calculated by adding up all of the throughput estimates for all branch 
offices.

At this point, it is necessary to consider the available head-end devices and the maximum throughput 
supported by each. The Cisco 7140 and 7200 VXR routers or the Catalyst 6500/Cisco 7600 are the 
preferred platforms for use as IPSec VPN head-end devices. Each of these routers has a range of options 
for interfaces as well as the ability to configure hardware-accelerated encryption.

Next, divide the aggregate throughput requirements by the throughput value for each respective platform 
value in Table 3-2, Table 3-3, and Table 3-4 below. This provides the number of head-end devices 
required, based on aggregate throughput:

A = sum of throughput estimates for each branch office (that is, the aggregate)

H = single head-end device throughput

C(a) = A/H, rounded up to nearest full integer, + 1 for resiliency 

For example, an enterprise with 300 branch offices, each having throughput requirements of 500 kbps, 
and planning a Solution One design, would require four head-end devices, as follows:

A = 300 branches @ 500 kbps = 300 x 0.5 Mbps = 150 Mbps

H = 66 Mbps (for Cisco 7200VXR router)

C(a) = 150/66 (rounded to next nearest integer) + 1 = 4

Compare the number of head-end devices calculated based on number of tunnels, C(t), to the number 
based on aggregate throughput, C(a). The greater of the two numbers is required to support the design.

As the number of tunnels increases, there is a corresponding decrease in encrypted throughput. This 
means that a design that has a uniformly distributed traffic load from branch offices across many tunnels 
requires more CPU than a design where the majority of traffic load is generated from a subset of the total 
tunnels being aggregated.

In addition to the two critical factors identified above, the following factors must also be considered at 
this point:

• Given the current network topology and traffic profile of the customer, what is the current CPU 
utilization on each distribution router, and how many branch offices are connected to each 
distribution router? This information provides a baseline of expected CPU utilization levels. 

• What are the aggregate WAN sizes for each respective branch? How the aggregate WAN speed is 
subdivided into a number of tunnels affects the overall number of tunnels that can be supported in 
this design. As discussed previously, as the number of tunnels increases, there is a corresponding 
decrease in throughput (or an increase in CPU utilization).
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• What other applications/protocols does the customer intend to run across the VPN? Multi-protocols 
perform differently in Cisco IOS compared to unicast IP. In the scalability testing performed to date, 
multi-protocols have not been comprehensively evaluated.

The result is that the number of head-end devices may need to be adjusted upward after these additional 
factors are considered.

Cisco recommends that head-end devices be chosen so that CPU utilization does not exceed 50 percent. 
This ensures that the device has enough performance left over to deal with various events that take place 
during the course of normal network operations, including network re-convergence in the event of a 
failure, re-keying IPSec SAs, and bursts of traffic seen in a normal operating network.

After initial deployment and testing, it may be possible to run head-end devices at CPU utilization levels 
higher than 50 percent (60–65 percent, for example). However, this design guide conservatively 
recommends staying at or below 50 percent, and therefore the throughput results presented are generally 
chosen at the 50 percent level.

Cisco VPN Routers for Head Ends
Cisco VPN routers suitable for head end deployments include the 7100 series, the 7200 series, the 3700 
series, the 3600 series, and the Catalyst 6500/Cisco 7600 platform (using the VPNSM). Specific 
platforms were selected from within each product family for evaluation. 

All products were configured with hardware-accelerated encryption enabled. Each product supports 
several hardware-accelerated encryption options. For example, both the 7100 and 7200 can be 
configured with one or two ISA/ISM cards; the 7200 can be configured with the newer VAM or VAM2. 
The 3600 series can be configured with different AIM performance levels, including Base (AIM-BP), 
Medium (AIM-MP), or High (AIM-HP), depending on the platform.

The configurations selected for scalability testing, along with the throughput thresholds attained (at 
50–55 percent CPU utilization and 500, 700, or 1040 tunnels configured) are shown in Table 3-2, 
Table 3-3, and Table 3-4. As mentioned earlier in Subsequent Testing, page 3-2, the site-to-site VPN 
testing was combined with the VoIP testing to save time. The results produced by these tests are more 
conservative than those that would ordinarily have been obtained because of the smaller average packet 
size of the VoIP flows. As a rule of thumb, these results may always be increased to get results consistent 
with the larger average packet sizes.

- 
Table 3-2 Head End Products Throughput—Solution One (IPSec with GRE)

Router Platform Hardware Acceleration # of Tunnels Active Throughput CPU % Utilization

Cisco 7200 w/NPE-G1 SA-VAM 148 44.8 Mbps 46%

Cisco 7200 w/NPE-G1 SA-VAM 196 66.3 Mbps 65%

Cisco 7200 w/NPE-G1 SA-VAM 240 80 Mbps 80%

Cisco 7200 w/NPE-G1 SA-VAM 500 78.1 Mbps 80%

Cisco 6500 w/MSFC2 VPNSM 500 924 Mbps NA

Cisco 3745 AIM-HPII 43 11.4 Mbps 50%

Cisco 3745 AIM-HPII 53 14 Mbps 62%

Cisco 3745 AIM-HPII 60 17.6 Mbps 72%
3-8
Data-only Site-to-Site IPSec VPN Design Guide

OL-7281-01



 

Chapter 3      Selecting Solution Components
  Head End Devices
The effect described in Tunnel Quantity Affects Throughput, page 3-3 is visible in the results with the 
7200 w/NPE-G1. At the 80 percent CPU mark, there is actually reduced throughput when 500 tunnels 
are active, as compared to 240 tunnels. It is also important to note that these limits were established 
during testing without IPSec fragmentation occurring in the network. See Minimizing Packet 
Fragmentation, page 2-5 for more information on the impact of fragmentation on VPN device 
performance and mitigation strategies. In addition, these results were obtained with the VoIP and 
enterprise traffic mix. The results produced are more conservative than what would ordinarily be 
obtained; for additional information on the testing, see Subsequent Testing, page 3-2. 

Head End Products for Solution Two
Table 3-3 shows results for testing with a configuration for Solution Two (DMVPN) using a dual 
hub-dual DMVPN design. In the results shown for the 7200 VXR, the head end is aggregating and 
maintaining EIGRP neighbor relationships with 400 branch-end routers on each of two mGRE interfaces 
(a total of 800 EIGRP neighbors, which is beyond the design recommendation of 700). It is exchanging 
voice and data with the number of spokes shown in the “# of Tunnels Active” column and maintaining 
its routing protocol relationship with the others. In the case of the 3745, the head-end router maintains 
routing neighbor relationships with 200 EIGRP neighbors on a single mGRE interface, and exchanges 
encrypted voice and data with the number of spokes shown in the “# of Tunnels Active” column.

As with other test results shown in this chapter, these limits were established during testing without 
IPSec fragmentation occurring in the network. Furthermore, the traffic mix used includes VoIP streams, 
making the average packet size smaller than what would be seen in a data-only enterprise network. For 
additional information regarding the traffic mix, see Subsequent Testing, page 3-2. 

Head End Products for Solution Three
Table 3-4 shows results for testing with a configuration for Solution Three: IPSec with DPD, RRI, and 
HSRP in place of IPSec with GRE and a routing protocol. The traffic mix used was that of the VoIP test. 
This traffic mix consists of packets with an average packet size smaller than what would normally be 
seen in an enterprise network, because of the inclusion of VoIP packets. Consequently, the results 
presented in Table 3-4 are more conservative than what could ordinarily be obtained. For additional 
information regarding the subsequent testing, see Subsequent Testing, page 3-2.

Table 3-3 Head End Products Throughput—Solution Two (DMVPN)

Router Platform Hardware Acceleration # of Tunnels Active Throughput CPU % Utilization

Cisco 7200 w/NPE-G1 SA-VAM 150 67.04 Mbps 53%

Cisco 7200 w/NPE-G1 SA-VAM 200 84.9 Mbps 68%

Cisco 7200 w/NPE-G1 SA-VAM 250 104.3 Mbps 82%

Cisco 3745 AIM-HPII 77 28.92 Mbps 50%

Cisco 3745 AIM-HPII 108 40.56 Mbps 62%

Cisco 3745 AIM-HPII 139 52.03 Mbps 72%
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As with results shown for Solutions One and Two, these results were determined during testing without 
IPSec fragmentation occurring in the network. The use of dual VAMs allows further scalability in 
Solution Three that would not be realized in Solutions One or Two. The VAM or VAM2 handles 
encryption processing, but does not accelerate GRE processing. In testing for Solutions One and Two, 
the router runs out of main CPU cycles in dealing with GRE overhead before the VAM runs out of 
processing power for encryption.

Other Cisco Products for the Head End
Several other Cisco products support IPSec VPN tunnel termination in a head end environment; for 
example, the VPN 3000 Concentrator series, and the Cisco PIX Firewall Series. The results for the Cisco 
PIX model 535 with the VAC Plus and 3080 with SEP and SEP/E are shown in Table 3-5.

These products are only capable of supporting Solution Three (IPSec with DPD, RRI and HSRP). They 
are not capable of performing GRE encapsulation or running routing protocols. Remember that these are 
conservative results. For additional information regarding the subsequent testing, see Subsequent 
Testing, page 3-2.

Table 3-4 Head End Products Throughput—Solution Three (IPSec with DPD, RRI and HSRP)

Head End Router 
Platform

Hardware Acceleration 
Option # of Tunnels Active Throughput CPU % Utilization

Cisco 6500 VPNSM 1040 1.03 Gbps N/A

Cisco 7200 w/NPE-G1 Dual SA-VAM 1040 106.7 Mbps 81%

Cisco 7200 w/NPE-G1 Dual SA-VAM2 1040 108.7 Mbps 77%

Cisco 7200 w/NPE-G1 Dual SA-VAM 250 83.9 Mbps 68%

Cisco 3745 AIM-HPII 53 15.1 Mbps 41%

Cisco 3745 AIM-HPII 60 17 Mbps 47%

Cisco 3745 AIM-HPII 95 28.69 Mbps 80%

Table 3-5 Other Head End Product Performance

Head End Router 
Platform

Hardware Acceleration 
Option # of Tunnels Active Throughput CPU % Utilization

Cisco PIX 535 VAC Plus 240 67.9 Mbps 50%

Cisco PIX 535 VAC Plus 330 93.6 Mbps 66%

Cisco PIX 535 VAC Plus 435 122.9 Mbps 80%

Cisco PIX 535 VAC Plus 500 166 Mbps 89%

Cisco 3080 SEP 138 38.8 Mbps 80%

Cisco 3080 SEP-E 138 39.4 Mbps 52%
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Cisco PIX VPN Limitations
Firewall rules require traffic entering an interface on a firewall to exit that firewall through a different 
interface, in effect passing all the way through the device. As a firewall, the Cisco PIX products share 
this characteristic. A result of this feature is that firewall devices do not support branch site to branch 
site communications over site-to-site VPNs with a hub-and-spoke model. The traffic from a branch site 
must be passed completely through the PIX, and is subject to the rules specified in the firewall. This 
prevents communication between two branch sites using the PIX as an intermediary.

See the following links for more product information on the Cisco VPN 3000 and PIX series:

• http://www.cisco.com/warp/public/cc/pd/hb/vp3000/

• http://www.cisco.com/warp/public/cc/pd/fw/sqfw500/

Branch Site Devices
This section includes the following topics:

• Sizing the Branch Site, page 3-11

• Cisco VPN Routers for Branch Sites, page 3-12

• Other Cisco Products for the Branch, page 3-18

In Solutions One and Two, the branch site devices are responsible for the following:

• Originating/terminating IPSec-encapsulated GRE tunnels from the head end

• Running a routing protocol inside of the GRE tunnels to advertise internal routes

In Solution Two, the branch site devices are also responsible for the following:

• Initiating NHRP entries with the head-end devices, so that they can build encrypted GRE tunnels 
back to the branch site

• Querying the head-end device for IP next-hop information, when spoke-to-spoke tunnel setup is 
required

In Solution Three, the branch site devices are responsible for the following:

• Originating/terminating ISAKMP and IPSec SAs from the head end

• Sending/receiving IKE keepalives to verify the state of the SAs to the head ends

The branch site device may also be responsible for forwarding DHCP requests to the central site, or even 
functioning as the DHCP server.

The next sections identify factors to consider when sizing the branch sites.

Sizing the Branch Site
The most important factor to consider when choosing a product for the branch office is the expected 
traffic throughput to the head end.

Other factors that should be considered include the following:

• What other features/functionality is the branch router providing (for example, WAN access, VoIP, 
Cisco IOS Firewall, and so on)?
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• Different branch devices offer a range of features that accommodate various levels of growth. For 
example, the Cisco 3660 supports six modular slots and various WAN adapters, whereas the Cisco 
2600 series supports only two slots.

Although the number of IPSec tunnels does not play as large a role in the branch device sizing, each 
branch site router must be able to terminate at least two IPSec-encapsulated GRE tunnels (primary and 
secondary) in Solutions One and Two, or two IPSec SAs, not encapsulated in GRE, in designs based on 
Solution Three.

The primary concern is the amount of traffic throughput along with the corresponding CPU utilization. 
Cisco recommends that branch devices be chosen so that CPU utilization does not exceed 65 percent. 
This ensures that the device has enough performance left over to deal with various events that take place 
during the course of normal network operations. The CPU on a branch-site router may run slightly higher 
than a head-end router because of the minimal routing convergence duties.

After initial deployment and testing, it may be possible to run branch-site devices at CPU utilization 
levels higher than 65 percent. However, this design guide conservatively recommends staying at or below 
65 percent, and therefore the throughput results presented were chosen at the 65 percent level.

Cisco VPN Routers for Branch Sites
Cisco VPN routers suitable for branch site deployments include the 3700 series, the 3600 series, the 
2600 series, the 1700 series, and the 800 series. More recently, the 3800, 2800, and 1800 ISR have been 
released. All recommended branch devices support hardware-accelerated encryption. The ISRs are 
configurable to work with either an integrated encryption module or with a separately purchased AIM.

Phase One Tests

Specific platforms were selected from within each product family for throughput comparison with 
hardware versus software encryption, and with fragmentation versus no fragmentation. Throughput 
results (taken at approximately 60–65 percent CPU utilization) are summarized in Table 3-6.

Table 3-6 Branch Site Device Throughput

Branch Router Platform
Hardware 
Acceleration Option

HW Encryption No 
Fragmentation

HW Encryption With 
Fragmentation1

1.  Fragmentation tests were performed with approximately 60 percent of packets fragmented, with the exception of the 2621 at approximately 30 percent 
fragmentation.

SW Encryption No 
Fragmentation

Cisco 3660 AIM-HP 16.0 Mbps 14.0 Mbps 2.4 Mbps

Cisco 3640 AIM-MP 3.5 Mbps 2.6 Mbps 900 kbps

Cisco 3620 AIM-MP 1.8 Mbps 1.6 Mbps 480 kbps

Cisco 26512

2.  Because of limitations in the scalability test, the 2651 was not tested beyond 2.2 Mbps. At this throughput rate, the 2651 experienced 43 percent CPU 
utilization. It is believed that the 2651 can handle additional throughput at higher line rates.

AIM-BP 2.8 Mbps 3.0 Mbps 960 kbps

Cisco 2621 AIM-BP 2.4 Mbps 2.5 Mbps 520 kbps

Cisco 2611 AIM-BP 2.0 Mbps 1.9 Mbps 380 kbps

Cisco 1750 VPN Module 2.6 Mbps 2.5 Mbps 560 kbps

Cisco 805 N/A N/A N/A 100 kbps
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Subsequent testing of branch-site devices has been completed with the enterprise VoIP traffic mix, with 
hardware-accelerated encryption, and with no fragmentation. This traffic mix has a smaller average 
packet size than would normally be seen in a data-only enterprise network. The results of using this 
traffic mix are the more conservative numbers produced. For additional information on this testing, see 
Subsequent Testing, page 3-2.

Solution One Test Results

In subsequent testing, all testing was performed with hardware-accelerated encryption, and a range of 
results, corresponding to different CPU levels, were collected for each platform. These results for the 
branch sites devices in Solution One are shown in Table 3-7.

Solution Three Testing

Applying the same test strategy as explained in Solution One, results were collected for the branch site 
devices using Solution Three. These results are shown in Table 3-8. 

Table 3-7 Branch Site Device Throughput—Solution One (IPSec with GRE)

Branch Router 
Platform

Hardware Acceleration 
Option Throughput (bps) Throughput (pps) CPU % Utilization

Cisco 3745 AIM-HPII 16.5 Mbps 7,597 pps 32%

Cisco 3745 AIM-HPII 33.1 Mbps 15,184 pps 61%

Cisco 3745 AIM-HPII 41.9 Mbps 19,055 pps 75%

Cisco 3725 AIM-EPII 6.3 Mbps 2,997 pps 27%

Cisco 3725 AIM-EPII 16.7 Mbps 7,626 pps 60%

Cisco 3725 AIM-EPII 25.2 Mbps 11,459 pps 86%

Cisco 3660 AIM-HPII 6.3 Mbps 2,994 pps 35%

Cisco 3660 AIM-HPII 16.4 Mbps 7,582 pps 74%

Cisco 3660 AIM-HPII 20.2 Mbps 9,197 pps 88%

Cisco 2691 AIM-EPII 4.9 Mbps 2,282 pps 26%

Cisco 2691 AIM-EPII 6.4 Mbps 3,014 pps 33%

Cisco 2691 AIM-EPII 16.8 Mbps 7,634 pps 79%

Cisco 831 Included 410 kbps 250 pps 31%

Cisco 831 Included 812 kbps 392 pps 59%

Cisco 831 Included 1.2 Mbps 505 pps 85%

Table 3-8 Branch Site Device Throughput—Solution Three (IPSec with DPD, RRI and HSRP)

Branch Router 
Platform

Hardware Acceleration 
Option Throughput (bps) Throughput (pps) CPU % Utilization

Cisco 3745 AIM-HPII 27.51 Mbps 13,205 pps 50%

Cisco 3745 AIM-HPII 38.6 Mbps 18,058 pps 65%

Cisco 3745 AIM-HPII 46.67 Mbps 23,105 pps 80%

Cisco 3725 AIM-EPII 16.89 Mbps 7,874 pps 52%
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Solution Two Testing

As Solution Two (DMVPN) was developed, two changes to test strategy occurred in the test labs.

• Customer usage of branch site routers indicated that most of these devices are required to perform 
various security or packet scrutiny functions, in addition to simple WAN termination, routing 
protocol, GRE tunnel maintenance, and encryption/decryption functions. To make test scenarios 
more realistic, Solution Two tests included the use of the following features:

– Outbound firewall inspection

– Inbound and outbound ACLs

– NAT

• Because branch site routers may have multiple tunnels active at a time (if spoke-to-spoke tunnels 
are permitted in the design), part of the test strategy was to establish what would be considered a 
“safe” maximum number of tunnels, as well as determining GRE and encryption performance on 
some number of those tunnels.

The Solution Two scalability test bed is shown in Figure 3-2.

Cisco 3725 AIM-EPII 20.96 Mbps 9,916 pps 67%

Cisco 3725 AIM-EPII 26.11 Mbps 12,890 pps 82%

Cisco 2691 AIM-EPII 10.25 Mbps 4,759 pps 48%

Cisco 2691 AIM-EPII 15.27 Mbps 7,108 pps 65%

Cisco 2691 AIM-EPII 18.32 Mbps 8,560 pps 80%

Cisco 2651XM AIM-BPII 2.46 Mbps 1,178 pps 49%

Cisco 2651XM AIM-BPII 2.96 Mbps 1,523 pps 63%

Cisco 2651XM AIM-BPII 4.02 Mbps 1,923 pps 76%

Cisco 1760 1700VPN 2.04 Mbps 942 pps 55%

Cisco 1760 1700VPN 2.54 Mbps 1,192 pps 65%

Cisco 1760 1700VPN 2.68 Mbps 1,465 pps 78%

Cisco 831 Included 867 kbps 413 pps 50%

Cisco 831 Included 1.16 Mbps 541 pps 65%

Cisco 831 Included 1.41 Mbps 665 pps 80%

Table 3-8 Branch Site Device Throughput—Solution Three (IPSec with DPD, RRI and HSRP) (continued)

Branch Router 
Platform

Hardware Acceleration 
Option Throughput (bps) Throughput (pps) CPU % Utilization
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Figure 3-2 Solution Two Scalability Test Bed

The routers tested are inserted in turn into the “Device Under Test” location. Different numbers of “1 
through X” spokes are brought into the test bed. These routers each open one IPSec SA (or tunnel) to 
the next-hop server, which supplies them the NBMA address of the device under test (DUT). Each spoke 
opens a spoke-to-spoke tunnel to the DUT. Tunnels are kept alive via Service Assurance Agent (SAA) 
and Network Time Protocol (NTP). 

Traffic is then generated through a certain number of these tunnels to assess the DUT router performance 
in terms of pps and bps, as it maintains what is considered its “safe maximum” number of tunnels. Each 
spoke router outside interface (other than the DUT) is shaped to 192 kbps; it is then known that the DUT 
is aggregating (192 kbps x the number of tunnels shown). 

Performance results for the branch-site devices in Solution Three are shown below. Table 3-9 shows 
results for the ISR platforms, allowing comparison of the integrated hardware encryption card with the 
add-on AIM.

1 through X spokes

NHRP links

Device under testNext-hop server

SAA endpoint
and NTP server

Core

DMVPN

Spoke-to-spoke tunnels

92
53

2

Table 3-9 Branch Site Device Throughput, DMVPN, ISR Platforms

Branch Router 
Platform/HW Acceleration 
Option

# Tunnels Passing 
Data/Active Throughput (bps) Throughput (pps) CPU % Utilization

Cisco 3845 Integrated 66/400 21.73 Mbps 10,879 pps 49%

Cisco 3845 Integrated 90/400 29.2 Mbps 14,508 pps 62%

Cisco 3845 Integrated 114/400 37.15 Mbps 18,147 pps 81%

Cisco 3845 AIM-HPII+ 76/400 25.91 Mbps 12,419 pps 51%

Cisco 3845 AIM-HPII+ 107/400 36.0 Mbps 17,140 pps 62%

Cisco 3845 AIM-HPII+ 135/400 45.23 Mbps 21,411 pps 78%
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Cisco 3825 Integrated 49/300 16.13 Mbps 8,081 pps 49%

Cisco 3825 Integrated 68/300 22.18 Mbps 11,003 pps 64%

Cisco 3825 Integrated 89/300 28.81 Mbps 14,196 pps 80%

Cisco 3825 AIM-HPII+ 57/300 19.77 Mbps 9,466 pps 51%

Cisco 3825 AIM-HPII+ 81/300 27.21 Mbps 12,792 pps 64%

Cisco 3825 AIM-HPII+ 104/300 34.78 Mbps 16,484 pps 78%

Cisco 2851 Integrated 33/100 11.38 Mbps 5,249 pps 53%

Cisco 2851 Integrated 43/100  14.67 Mbps 6,763 pps 67%

Cisco 2851 Integrated 54/100 18.48 Mbps 8,459 pps 80%

Cisco 2851 AIM-EPII+ 40/200 13.89 Mbps 6,500 pps 54%

Cisco 2851 AIM-EPII+ 54/200 18.64 Mbps 8,648 pps 68%

Cisco 2851 AIM-EPII+ 67/200 22.98 Mbps 10,616 pps 79%

Cisco 2821 Integrated 30/100 10.26 Mbps 4,769 pps 49%

Cisco 2821 Integrated 40/100 13.68 Mbps 6,301 pps 63%

Cisco 2821 Integrated 50/100 17.1 Mbps 7,841 pps 80%

Cisco 2821 AIM-EPII+ 33/200 11.59 Mbps 5,437 pps 49%

Cisco 2821 AIM-EPII+ 43/200 15.01 Mbps 6,980 pps 63%

Cisco 2821 AIM-EPII+ 55/200 18.92 Mbps 8,783 pps 78%

Cisco 2811 Integrated 7/50 2.46 Mbps 1,167 pps 46%

Cisco 2811 Integrated 10/50 3.48 Mbps 1,628 pps 64%

Cisco 2811 Integrated 13/50 4.94 Mbps 2,085 pps 77%

Cisco 2811 AIM-EPII+ 9/50 3.15 Mbps 1,472 pps 48%

Cisco 2811 AIM-EPII+ 13/50 4.51 Mbps 2,090 pps 63%

Cisco 2811 AIM-EPII+ 17/50 5.86 Mbps 2,700 pps 77%

Cisco 2801 Integrated 7/50 2.48 Mbps 1,169 pps 50%

Cisco 2801 Integrated 10/50 3.49 Mbps 1,630 pps 69%

Cisco 2801 Integrated 13/50 4.53 Mbps 2,094 pps 80%

Cisco 2801 AIM-EPII+ 11/50 3.84 Mbps 1,788 pps 50%

Cisco 2801 AIM-EPII+ 15/50 5.17 Mbps 2,394 pps 64%

Cisco 2801 AIM-EPII+ 20/50 6.81 Mbps 3,152 pps 80%

Cisco 1841 Integrated 7/50 2.48 Mbps 1,174 pps 49%

Cisco 1841 Integrated 10/50 3.47 Mbps 1,624 pps 63%

Cisco 1841 Integrated 13/50 4.47 Mbps 2,079 pps 78%

Cisco 1841 AIM-EPII+ 11/50 3.81 Mbps 1,777 pps 48%

Table 3-9 Branch Site Device Throughput, DMVPN, ISR Platforms (continued)

Branch Router 
Platform/HW Acceleration 
Option

# Tunnels Passing 
Data/Active Throughput (bps) Throughput (pps) CPU % Utilization
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Table 3-10 shows results for the legacy platforms in Solution Two designs. The Cisco 7200 VXR with 
NPE-G1 and VAM2 is included here as well. Considering the ability of DMVPN to set up spoke-to-spoke 
tunnels, designs with high-bandwidth access at the branch sites, and/or designs in which a large portion 
of the tunnels created may be encrypting spoke-to-spoke application flows, should consider using the 
most powerful platforms available at the branch location.

Cisco 1841 AIM-EPII+ 15/50 5.19 Mbps 2,395 pps 62%

Cisco 1841 AIM-EPII+ 20/50 6.81 Mbps 3,146 pps 79%

Table 3-9 Branch Site Device Throughput, DMVPN, ISR Platforms (continued)

Branch Router 
Platform/HW Acceleration 
Option

# Tunnels Passing 
Data/Active Throughput (bps) Throughput (pps) CPU % Utilization

Table 3-10 Branch Site Device Throughput—Solution Two (DMVPN, Legacy Platforms)

Branch Router Platform/HW 
Acceleration Option

# Tunnels Passing 
Data/Active Throughput (bps) Throughput (pps) CPU % Utilization

Cisco 7200VXR 
2 x SA-VAM2

33.65 Mbps 100/400 16,060 pps 58%

Cisco 7200VXR 
2 x SA-VAM2

125/400 42.05 Mbps 19,921 pps 70%

Cisco 7200VXR 
2 x SA-VAM2

160/400 53.29 Mbps 25,206 pps 89%

Cisco 3745 AIM-HPII 40/200 13.82 Mbps 6,479 pps 48%

Cisco 3745 AIM-HPII 54/200 18.48 Mbps 8,612 pps 63%

Cisco 3745 AIM-HPII 71/200 24.08 Mbps 11,183 pps 81%

Cisco 3725 AIM-HPII 22/125 7.67 Mbps 3,599 pps 48%

Cisco 3725 AIM-HPII 30/125 10.39 Mbps 4,834 pps 65%

Cisco 3725 AIM-HPII 37/125 12.8 Mbps 5,913 pps 79%

Cisco 2691 AIM-EPII 16/100 5.59 Mbps 2,640 pps 47%

Cisco 2691 AIM-EPII 22/100 7.62 Mbps 3,553 pps 65%

Cisco 2691 AIM-EPII 28/100 9.65 Mbps 4,473 pps 79%

Cisco 3660 AIM-HPII 14/100 4.95 Mbps 2,338 pps 48%

Cisco 3660 AIM-HPII 20/100 6.98 Mbps 3,256 pps 64%

Cisco 3660 AIM-HPII 26/100 8.99 Mbps 4,172 pps 82%

Cisco 2651XM AIM-BPII 4/25 1.4 Mbps 661 pps 47%

Cisco 2651XM AIM-BPII 5/25  1.7 Mbps  811 pps 57%

Cisco 2651XM AIM-BPII 7/25 2.4 Mbps  1116 pps 77%

Cisco 1760 1700VPN 4/25 1.4 Mbps 660 pps 58%

Cisco 1760 1700VPN 5/25 1.7 Mbps 816 pps 70%

Cisco 1760 1700VPN 6/25 2.08 Mbps 966 pps 82%

Cisco 1711 1700VPN 3/25 1.07 Mbps 509 pps 54%
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Other Cisco Products for the Branch
Several other Cisco products support IPSec VPN tunnel termination in a branch site environment; for 
example, the Cisco VPN 3002 Concentrator Series and the Cisco PIX 501 and 506 Firewalls. These 
platforms were not part of the scalability testing and therefore are not fully discussed in this version of 
the design guide. 

See the following links for more product information on the Cisco VPN3000 and PIX series:

• http://www.cisco.com/warp/public/cc/pd/hb/vp3000/

• http://www.cisco.com/warp/public/cc/pd/fw/sqfw500/

Software Releases Evaluated
The following software releases were used in the initial scalability testing:

• Cisco head-end routers (7140, 7200)—Cisco IOS Software Release 12.1(9)E (with 3DES IPSec 
support)

• Cisco branch office routers (1750, 26xx, 36xx)—Cisco IOS Software Release 12.2(3.5)T (with 
3DES IPSec support)

Note Note that several Cisco IOS images exist, configured with various levels of encryption technology. There 
are certain restrictions and laws governing the use and export of encryption technology. 

With the Cisco IOS images referenced above, all VPN features may be enabled, including 3DES.

Subsequent testing has been completed with the following Cisco IOS versions:

• Cisco 6500 VPNSM—Cisco IOS Software Release 12.2(9)YO

• Cisco head-end routers (7140, 7200) —Cisco IOS Software Release 12.2(13)S, IOS 12.3(5)

• Cisco branch office routers (1750, 26xx, 36xx, 37xx)— Cisco IOS Software Release 12.2(13)T, IOS 
12.3(8)T5

• Cisco branch office ISRs (1841, 28xx, 38xx)—Cisco IOS Software Release 12.3(8)T5, IOS 
12.3(11)T2

• Cisco remote office routers (831)—Cisco IOS Software Release 12.2(4)YB, IOS 12.3(13)ZH

• Cisco PIX 535—Cisco PIX 6.3.1

Cisco 1711 1700VPN 4/25 1.4 Mbps 663 pps 70%

Cisco 1711 1700VPN 5/25 1.74 Mbps 815 pps 82%

Cisco 831 Integrated 1/10 355,400 kbps 171 pps 27%

Cisco 831 Integrated 2/10 688,400 kbps 323 pps 49%

Cisco 831 Integrated 3/10 1.02 Mbps 474 pps 70%

Table 3-10 Branch Site Device Throughput—Solution Two (DMVPN, Legacy Platforms) (continued)

Branch Router Platform/HW 
Acceleration Option

# Tunnels Passing 
Data/Active Throughput (bps) Throughput (pps) CPU % Utilization
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As always, before selecting Cisco IOS software, perform the appropriate research on the Cisco website 
and consult with Cisco Associates. It is also important to have an understanding of issues in those levels 
of code that may affect other features configured on the customer routers.
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C H A P T E R 4

Configuring the Three Solutions

This chapter provides configuration examples for the three solutions, and includes the following 
sections:

• Configuring Solution One, page 4-1

• Configuring Solution Two, page 4-5

• Configuring Solution Three, page 4-10

Configuring Solution One
The configuration issues defined in this section are specific to VPN implementation for Solution One. 
It is presumed that the reader is reasonably familiar with standard Cisco CLI configuration practices.

All example configurations shown are for IPSec in tunnel mode.

An IPSec configuration is implemented by completing the steps described in the following sections:

• IKE Policy Configuration, page 4-1

• IPSec Transform and Protocol Configuration, page 4-2

• Access List Configuration for Encryption, page 4-2

• Crypto Map Configuration, page 4-3

• Applying Crypto Maps, page 4-4

• Common Configuration Mistakes, page 4-4

The sections that follow cover each of these steps in more detail. For more information, see the following 
URL: http://www.cisco.com/cgi-bin/Support/PSP/psp_view.pl?p=Internetworking:IPSec

IKE Policy Configuration
There must be at least one matching IKE policy between two potential IPSec peers. The sample 
configuration below shows a policy using pre-shared keys with 3DES as the encryption transform. There 
is a default IKE policy that contains the default values for the transform, hash method, Diffie-Helman 
group, authentication, and lifetime parameters. This is the lowest priority IKE policy. 

When using pre-shared keys, Cisco recommends that wildcard keys not be used. Instead, the example 
shows two keys configured for two separate IPSec peers. The keys should be carefully chosen; 
“bigsecret” is used only as an example. The use of alphanumeric and punctuation characters as keys is 
recommended.
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Head-end router:

interface FastEthernet1/0
ip address 192.168.251.1 255.255.255.0
!
crypto isakmp policy 1
 encr 3des
 authentication pre-share
crypto isakmp key bigsecret address 192.168.161.2

Branch-site router:

interface s0/0
ip address 192.168.161.2 255.255.255.0
!
crypto isakmp policy 1
 encr 3des
 authentication pre-share
crypto isakmp key bigsecret address 192.168.251.1

The default values and more information can be found at the following URL: 
http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/122cgcr/fsecur_r/fipsencr/srfike.ht
m#xocid17729

IPSec Transform and Protocol Configuration
The transform set must match between the two IPSec peers. The transform set names are locally 
significant only. However, the encryption transform, hash method, and the particular protocols used 
(ESP or AH) must match. You may also configure data compression here but it is not recommended on 
peers with high speed links. There can be multiple transform sets for use between different peers. 

Head-end router:

interface FastEthernet1/0
ip address 192.168.251.1 255.255.255.0
!
crypto ipsec transform-set vpn-test esp-3des esp-sha-hmac 

Branch-site router:

interface s0/0
ip address 192.168.161.2 255.255.255.0
!
crypto ipsec transform-set vpn-test esp-3des esp-sha-hmac

More information can be found at the following URL: 
http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/122cgcr/fsecur_r/fipsencr/srfipsec.
htm#xtocid105784

Access List Configuration for Encryption
The access list entries defining the traffic to be encrypted should be mirror images of each other on the 
IPSec peers. If access list entries include ranges of ports, then a mirror image of those same ranges must 
be included on the remote peer access lists. The addresses specified in these access lists are independent 
of the addresses used by the IPSec peers. In this example, the IP protocol GRE is specified on both the 
source and destination parts of the access list. All traffic encapsulated in the GRE packets is protected.

Head-end router:
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interface FastEthernet1/0
ip address 192.168.251.1 255.255.255.0
!
ip access-list extended vpn-static1 
permit gre host 192.168.251.1 host 192.168.1.2 

Branch-site router:

interface s0/0
ip address 192.168.161.2 255.255.255.0
!
ip access-list extended vpn-static2 
permit gre host 192.168.1.2 host 192.168.251.1

An example such as that shown above is logical for Solution One, where all packets to be encrypted are 
identified as “GRE” and are carried between two peers designated as crypto peers to each other. In newer 
releases of Cisco IOS Software, the requirement for “strict mirroring” on crypto ACLs is discontinued.

Crypto Map Configuration
The crypto map entry ties together the IPSec peers, the transform set used, and the access list used to 
define the traffic to be encrypted. The crypto map entries are evaluated sequentially.

In the example below, the crypto map name “static-map” and crypto map numbers (for example. “1” and 
“20”) are locally significant only. The first statement sets the IP address used by this peer to identify 
itself to other IPSec peers in this crypto map. This address must match the set peer statement in the 
remote IPSec peers crypto map entries. This address also needs to match the address used with any 
pre-shared keys the remote peers might have configured. The IPSec mode defaults to tunnel mode. 

Head-end router:

interface FastEthernet1/0
ip address 192.168.251.1 255.255.255.0
!
crypto map static-map local-address FastEthernet1/0
crypto map static-map 1 ipsec-isakmp
 set peer 192.168.161.2
 set transform-set vpn-test
 match address vpn-static1

Branch-site router:

interface s0/0
ip address 192.168.161.2 255.255.255.0
!
crypto map static-map local-address Serial0/0
crypto map static-map 20 ipsec-isakmp
 set peer 192.168.251.1
 set transform-set vpn-test
 match address vpn-static2

A more complete description can be found at the following URL: 
http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/122cgcr/fsecur_r/fipsencr/srfipsec.
htm - xtocid105785
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Applying Crypto Maps
Before Cisco IOS Software Release 12.2(13)T, the crypto maps must be applied to both the physical 
interface and the logical interfaces, such as the GRE tunnel interfaces. As of Cisco IOS Software Release 
12.2(13)T (assumed in the example below), the crypto map is applied only to the physical interface, not 
to the logical interface. 

Head-end router:

interface Tunnel1
 bandwidth 1536
 ip address 10.62.1.193 255.255.255.252
 tunnel source 192.168.251.1
 tunnel destination 192.168.161.2
!
interface FastEthernet1/0
ip address 192.168.251.1 255.255.255.0
crypto map static-map
!

Branch-site router:

interface Tunnel1
 bandwidth 1536
 ip address 10.62.1.194 255.255.255.252
 tunnel source 192.168.161.2
 tunnel destination 192.168.251.1
!
interface Serial0/0
 bandwidth 1536
 ip address 192.168.161.2 255.255.255.0
 crypto map static-map

Common Configuration Mistakes
The following sections outline some common mistakes and problems encountered when configuring 
IPSec with GRE.

ACL Mirroring

In older versions of Cisco IOS Software, the access lists that define the traffic to be encrypted must be 
mirror images of each other. This is no longer true per Cisco IOS Software conventions however, as 
explained in Access List Configuration for Encryption, page 4-2. In this solution, all packets are sourced 
from and destined to the GRE tunnel addresses and can be identified as type GRE, which is the best way 
to create the crypto ACL. The source port and source address in the access list on one peer must also 
match the destination port and destination address on the other peer. The elimination of the source and 
destination ports is permissible; however, the use of the keyword “any” for the addresses is strongly 
discouraged. This ensures proper processing of encrypted traffic on the remote peer.

Peer Address Matching

The IP address used as the IPSec source address must match the address configured as the destination 
address on the IPSec peer and vice-versa. Unless the address is configured specifically, the address of 
the outgoing interface will be used as the IPSec peer address.
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Transform Set Matches

At least one matching transform set must be configured between two IPSec peers. When specifying a 
particular strength of encryption algorithm, a similar strength IKE algorithm should also be configured. 
Failure to do so can weaken the encryption strength of the entire solution.

IKE Policy Matching

There is a default IKE policy present in all Cisco IOS Software devices. This policy uses lower security 
hash methods and encryption transform sets. If a stronger IKE policy is desired, at least one matching 
IKE policy must be configured between each IPSec peer.

Cisco recommends using the same transform set and hash methods in IKE and IPSec policies.

Configuring Solution Two
This section describes the configuration issues specific to VPN implementation for Solution Two 
(DMVPN). A DMVPN IPSec configuration is implemented by completing the steps described in the 
following sections:

• IKE Policy Configuration, page 4-5

• IPSec Profile Configuration, page 4-6

• mGRE or GRE Tunnel Configuration, page 4-7

• NHRP Configuration, page 4-8

• Applying Tunnel Protection, page 4-9

• Tunnels Sharing a Tunnel Source Interface, page 4-9

The sections that follow cover each of these steps in more detail. For more information, see the following 
URL: http://www.cisco.com/warp/customer/471/dcmvpn.html

IKE Policy Configuration
As with Solution One, there must be at least one matching IKE policy between two potential IPSec peers. 
For DMVPN, this means that head-end and branch-end routers must be able to authenticate with each 
other and, if spoke-to-spoke IPSec SAs are permitted, the branch-end devices must also be able to 
authenticate with each other to create a matching IKE policy between them. The sample configuration 
below shows a policy using pre-shared keys with 3DES as the encryption transform. The key “bigsecret” 
is shared by all devices, with the branch device configured to the match on the address of each head-end 
router; the head-end routers are configured with a wildcard. 

Note that this only an example. In general, wildcard keys are not recommended, and key strings should 
include alphanumeric and punctuation characters. Digital certificates, AAA authentication via a 
RADIUS server, or RSA encrypted nonces are also options for IKE authentication.

Head-end router #1:

interface FastEthernet1/0
ip address 192.168.251.1 255.255.255.0
!
crypto isakmp policy 1
 encr 3des
 authentication pre-share
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crypto isakmp key bigsecret address 0.0.0.0 0.0.0.0

Head-end router #2:

interface FastEthernet1/0
ip address 192.168.252.1 255.255.255.0
!
crypto isakmp policy 1
 encr 3des
 authentication pre-share
crypto isakmp key bigsecret address 0.0.0.0 0.0.0.0

Branch-site router:

interface Serial0/0
ip address 192.168.161.2 255.255.255.0
!
crypto isakmp policy 1
 encr 3des
 authentication pre-share
 group 2
crypto isakmp key bigsecret address 192.168.251.1
crypto isakmp key bigsecret address 192.168.252.1
!

The default values and more information can be found at the following URL: 
http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/122cgcr/fsecur_r/fipsencr/srfike.ht
m - xtocid17729

IPSec Profile Configuration
An IPSec profile must be configured that matches between two IPSec peers. An IPSec profile includes 
the transform set, perfect forward secrecy (PFS) group settings, SA parameters such as lifetime and 
idletime, and identity restrictions. The transform set is configured independently of the IPSec profile, 
but referenced by name in the profile definition; names are locally significant only. However, the 
encryption transform, hash method, and the particular protocols used (ESP or AH) must match between 
peers. Multiple transform sets and multiple profile definitions for use between different peers can be 
defined in one router. 

Head-end router:

crypto ipsec transform-set ENTERPRISE esp-3des esp-sha-hmac
 mode transport 
!
crypto ipsec profile DMVPN-HEAD
 set transform-set ENTERPRISE
!

Branch-site router:

crypto ipsec transform-set ENTERPRISE esp-3des esp-sha-hmac
 mode transport
!
crypto ipsec profile DMVPN-BRANCH
 set transform-set ENTERPRISE
!

4-6
Data-only Site-to-Site IPSec VPN Design Guide

OL-7281-01

http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/122cgcr/fsecur_r/fipsencr/srfike.htm - xtocid17729


 

Chapter 4      Configuring the Three Solutions
  Configuring Solution Two
mGRE or GRE Tunnel Configuration
The head-end devices must be configured with mGRE tunnels, allowing a single GRE interface to 
support multiple IPSec tunnels. The branch-end devices can be configured with either mGRE tunnels, if 
spoke-to-spoke tunnel setup is to be supported in the network, or with point-to-point GRE tunnels, if the 
design is to be restricted to hub-and-spoke. An mGRE tunnel requires the configuration of an IP address 
to serve as tunnel source, but no tunnel destination address. A point-to-point GRE tunnel requires both 
a source and destination address in its configuration. 

When mGRE is in use, a tunnel key value is usually configured, which allows a router with more than 
one mGRE interface to differentiate between them. As of Cisco IOS Software Release 12.3(9.13)T, it is 
possible to configure mGRE tunnel interfaces without tunnel keys and have them serve separate 
DMVPN groupings; to do so, each mGRE interface must reference a unique IP address or interface as 
its tunnel source. 

Note Because of a regression issue, Cisco recommends using Cisco IOS Software Release 12.3(12.01)T or 
12.3(11)T3 if configuring an mGRE interface without a tunnel key.

The example below shows two head-end devices and one branch-end device with a point-to-point tunnel 
to each head-end router, using tunnel keys.

Head-end router #1:

interface Tunnel0
 description mGRE Template Tunnel
 ip address 10.0.0.1 255.255.255.0
 tunnel source FastEthernet0/0
 tunnel mode gre multipoint
 tunnel key 10000
!

Head-end router #2:

interface Tunnel0
 description mGRE Template Tunnel
 ip address 10.0.1.1 255.255.255.0
 tunnel source FastEthernet0/0
 tunnel mode gre multipoint
 tunnel key 10001
!

Branch-site router:

interface Tunnel0
 description GRE Tunnel
 ip address 10.0.0.2 255.255.255.0
 tunnel source Ethernet0/0
 tunnel destination 172.16.0.1
 tunnel key 10000
!
interface Tunnel1
 description GRE Tunnel
 ip address 10.0.1.2 255.255.255.0
 tunnel source Ethernet0/0
 tunnel destination 172.16.0.2
 tunnel key 10001
!
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NHRP Configuration
NHRP is a Layer 2 address resolution protocol and cache, similar to ARP and Frame Relay inverse ARP. 
The head-end routers function as NHRP servers to the branch-end routers. Branch-end routers send 
registration requests with both their tunnel and NBMA addresses; the head ends cache this information 
and can then serve it to other devices inquiring for it.

Branch-end routers require ip nhrp map statements to the hub addresses. All routers must belong to the 
same NHRP network, as configured by the ip nhrp network-id <id> command. The network-id defines 
an NHRP domain and is unrelated to the tunnel key. Also, the routers in an NHRP domain must agree 
on an NHRP holdtime (the recommendation is 10 minutes, or roughly three times the NHRP registration 
request interval), and they can be configured to authenticate with each other via a key string. 

To support routing protocols that use multicast for their updates (for instance, EIGRP and OSPF), or any 
other form of multicast across DMVPN, the hub router is configured to send multicast to all spokes that 
register with it dynamically. On the branch router, a configuration line pointing to the hub router is 
needed for mGRE tunnel interfaces, but not for point-to-point GRE. Configuration examples for two hub 
routers and one branch router in a single DMVPN (all interfaces using mGRE) are as follows:

Head-end router #1:

interface Tunnel0
 description mGRE Template Tunnel
 ip address 10.0.0.1 255.255.255.0
 ip nhrp authentication cisco123
 ip nhrp map multicast dynamic
 tunnel source FastEthernet0/0
 tunnel mode gre multipoint
 tunnel key 10000
 ip nhrp network-id 100
 ip nhrp holdtime 600
!
interface FastEthernet0/0
 description Outside interface
 ip address 172.16.0.1 255.255.255.0
!

Head-end router #2:

interface Tunnel0
 description mGRE Template Tunnel
 ip address 10.0.0.2 255.255.255.0
 ip nhrp authentication cisco123
 ip nhrp map multicast dynamic
 tunnel source FastEthernet0/0
 tunnel mode gre multipoint
 tunnel key 10000
 ip nhrp network-id 100
 ip nhrp holdtime 600
!
interface FastEthernet0/0
 description Outside interface
 ip address 172.16.0.2 255.255.255.0
!

Branch-site router:

interface Tunnel0
 description mGRE Template Tunnel
 ip address 10.0.0.3 255.255.255.0
 ip nhrp authentication cisco123
 tunnel source Ethernet0/0
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 tunnel mode gre multipoint
 tunnel key 10000
 ip nhrp map 10.0.0.1 172.16.0.1
 ip nhrp map multicast 172.16.0.1
 ip nhrp map 10.0.0.1 172.16.0.2
 ip nhrp map multicast 172.16.0.2
 ip nhrp network-id 100
 ip nhrp holdtime 600
 ip nhrp nhs 10.0.0.1
 ip nhrp nhs 10.0.0.2
!

Applying Tunnel Protection
The final step in DMVPN configuration is the application of the tunnel protection command to the 
tunnel interface. The tunnel protection command is not applied to the router outside interface, or to any 
other interface in the router. For brevity, in the example below, only a few lines of the tunnel interface 
configurations are shown.

Head-end router:

crypto ipsec transform-set ENTERPRISE esp-3des esp-sha-hmac 
 mode transport
!
crypto ipsec profile DMVPN-HEAD
 set transform-set ENTERPRISE
!
interface Tunnel0
 description mGRE Template Tunnel
 ip address 10.0.0.1 255.255.255.0
 …
 tunnel protection ipsec profile DMVPN-HEAD
!

Branch-site router:

crypto ipsec transform-set ENTERPRISE esp-3des esp-sha-hmac 
 mode transport
!
crypto ipsec profile DMVPN-BRANCH
 set transform-set ENTERPRISE
!
interface Tunnel0
 description mGRE Template Tunnel
 ip address 10.0.0.2 255.255.255.0
 …
 tunnel protection ipsec profile DMVPN-BRANCH
!

Tunnels Sharing a Tunnel Source Interface
If more than one mGRE tunnel is configured on a router (for instance, on a hub router), it is possible to 
reference the same tunnel source address on each tunnel interface. In this case, the keyword “shared” is 
used in the tunnel protection command on both interfaces. This does not tie the two mGRE tunnels into 
the same DMVPN “cloud”; each tunnel interface requires a unique tunnel key, NHRP network-id, and 
IP subnet. An example is as follows:
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Head-end router:

interface Tunnel0
 description mGRE Template Tunnel
 ip address 10.0.0.1 255.255.255.0
 ip nhrp authentication cisco123
 ip nhrp map multicast dynamic
 tunnel source FastEthernet0/0
 tunnel mode gre multipoint
 tunnel key 10000
 ip nhrp network-id 100
 ip nhrp holdtime 600
 tunnel protection ipsec profile DMVPN-HEAD shared
!
interface Tunnel1
 description mGRE Template Tunnel
 ip address 10.0.11.1 255.255.255.0
 ip nhrp authentication cisco123
 ip nhrp map multicast dynamic
 tunnel source FastEthernet0/0
 tunnel mode gre multipoint
 tunnel key 10011
 ip nhrp network-id 110
 ip nhrp holdtime 600
 tunnel protection ipsec profile DMVPN-HEAD shared
!

Configuring Solution Three
This section describes the details of the configuration for Solution Three, and includes the following 
sections:

• IKE Configuration, page 4-10

• IPSec Configuration, page 4-11

• Head End HSRP and Interface Configuration, page 4-13

• Head End Redistribution for RRI Configuration, page 4-14

IKE Configuration
The IKE configuration for Solution Three currently uses pre-shared keys. The preferred method for IKE 
authentication is the use of digital certificates. The use of digital certificates is more scalable and more 
secure than the use of pre-shared keys. 

Within the context of Solution Three, one pre-shared key must be assigned per remote peer. Each 
pre-shared key is configured on a line by itself. An alternative to configuring the pre-shared keys in the 
head end configuration is the use of a RADIUS server. That configuration is not presented here. In the 
following example, only a single pre-shared key for one peer is shown, for clarity.

Dead Peer Detection

An enhancement to the isakmp keepalive command has changed the way that IKE keepalives work, 
creating the feature known as Dead Peer Detection (DPD). DPD no longer automatically sends hello 
messages to the IKE peer if live traffic has been received from that peer within a specified period. The 
first variable in the crypto isakmp keepalive command is the number of seconds that the peer waits for 
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valid traffic from its IPSec neighbor. If no traffic has been received, the second variable is the number 
of seconds between retries. This scheme helps conserve router CPU by not sending the keepalive 
messages if a router has just received valid traffic.

Head-end router #1:

interface GigabitEthernet0/1
ip address 192.168.251.5 255.255.255.0
standby ip 192.168.251.1
!
crypto isakmp policy 1
 encr 3des
 authentication pre-share
 group 2
crypto isakmp key bigsecret address 192.168.161.2
crypto isakmp keepalive 60 5
!

Head-end router #2:
interface GigabitEthernet0/1
ip address 192.168.252.6 255.255.255.0
standby ip 192.168.251.1
!
crypto isakmp policy 1
 encr 3des
 authentication pre-share
 group 2
crypto isakmp key bigsecret address 192.168.161.2
crypto isakmp keepalive 60 5
!

Branch-site router #1:

interface Serial0/0
ip address 192.168.161.2 255.255.255.0
!
crypto isakmp policy 1
 encr 3des
 authentication pre-share
 group 2
crypto isakmp key bigsecret address 192.168.251.1
crypto isakmp keepalive 60 5
!

IPSec Configuration
Two features in Cisco IOS Software each provide part of the IPSec High Availability (HA) feature. 
Reverse Route Injection (RRI) places static routes into a router forwarding table for networks it has 
learned about from IPSec SAs. These static routes can then be redistributed into any routing protocol 
running on the router.

Dynamic IPSec Tunnels

Dynamic tunnels are necessary when using IPSec HA features because of the way that RRI operates. 
When a static crypto map exists on a router, the network information from that crypto map is used to 
create a static route. However, in the case of this solution, only one head end has a live connection to a 
branch router. If static crypto maps are used, both head-end routers create static routes corresponding to 
the same branch locations. Each of these static routes is then redistributed into the routing protocol 
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running on the particular head-end device. This can cause asymmetrical routing and more than the 
necessary number of IKE and IPSec SAs to be negotiated. The use of dynamic tunnels also greatly 
simplifies the configuration on head-end routers. There is no access list associated with a crypto map 
entry configured on routers with dynamic crypto maps. In this configuration, access lists are not 
required.

Reverse Route Injection

RRI is implemented by the single reverse-route command under the crypto map of an IPSec 
configuration. If RRI has been configured on a router with static crypto maps, the network information 
from the access lists used in the crypto maps is used to create the static route entries, whether or not the 
SA for the particular line in the access list has been negotiated and is active. If dynamic crypto maps are 
configured, the network information is not placed in the routing table as a static route until the SA 
negotiation has been completed.

Head-end router #1:

crypto ipsec transform-set vpn-test esp-3des esp-sha-hmac 
!
crypto dynamic-map dmap 10
 set transform-set vpn-test 
 reverse-route
!
!
crypto map dynamic-map local-address GigabitEthernet0/1
crypto map dynamic-map 10 ipsec-isakmp dynamic dmap 
!

Head-end router #2:

crypto ipsec transform-set vpn-test esp-3des esp-sha-hmac 
!
crypto dynamic-map dmap 10
 set transform-set vpn-test 
 reverse-route
!
!
crypto map dynamic-map local-address GigabitEthernet0/1
crypto map dynamic-map 10 ipsec-isakmp dynamic dmap 
!

Branch router #1:

crypto ipsec transform-set vpn-test esp-3des esp-sha-hmac 
!
crypto map static-map local-address Serial0/0
crypto map static-map 10 ipsec-isakmp 
 set peer 192.168.251.1
 set transform-set vpn-test 
 match address b000
!
ip access-list extended b000
 permit ip 10.60.0.0 0.0.0.255 10.0.0.0 0.255.255.255
!
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Head End HSRP and Interface Configuration
Hot Standby Router Protocol (HSRP) is used as part of HA IPSec to ensure that the head end IPSec peer 
address is always available for remote devices.

HSRP and IPSec

The HSRP configuration used on an interface with a crypto map is identical to the normal use of HSRP. 
All the standby commands operate as they normally would without an IPSec configuration. The one 
difference between an IPSec configuration without HSRP and the configuration that includes HSRP is 
the elimination of the local peer address command. When a crypto map is applied to an interface with 
the redundancy keyword, the IP address that has been assigned to the standby group is now automatically 
used as the local IPSec peer address without any requirement for a local peer statement.

Head-end router #1:

interface GigabitEthernet0/1
 description GigabitEthernet0/1
 ip address 192.168.251.5 255.255.255.248
 duplex auto
 speed auto
 media-type gbic
 negotiation auto
 standby ip 192.168.251.1
 standby timers msec 50 1
 standby priority 101
 standby preempt
 standby name outside
 standby track GigabitEthernet0/2
 crypto map dynamic-map redundancy outside
!

Head-end router #2:

interface GigabitEthernet0/1
 description GigabitEthernet0/1
 ip address 192.168.251.6 255.255.255.248
 duplex auto
 speed auto
 media-type gbic
 negotiation auto
 standby ip 192.168.251.1
 standby timers msec 50 1
 standby preempt
 standby name outside
 standby track GigabitEthernet0/2
 crypto map dynamic-map redundancy outside
!

Note that one router, Head-end router #1 in this case, has a standby priority configured. This causes it 
to be the preferred router for this standby group. If the number of IPSec peers is large, multiple standby 
groups may be configured, with a separate set of peers configured to each standby group. In this manner, 
the failure of the active router for one group causes a failover for only that group. The operational router 
does not have to complete IKE negotiations for both standby groups.

At the branch site, no special configurations are required to make this router aware that HSRP is in use 
at the head end. The crypto map is applied to the physical interface as usual.

Branch router #1:

interface Serial0/0
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 description Serial0/0 
 ip address 192.168.0.2 255.255.255.252
 crypto map static-map
!

Head End Redistribution for RRI Configuration
RRI operates by creating a static route that is placed into the routing table for any network information 
derived from SAs associated with the crypto map that has the reverse route command statement applied. 
This is half of the procedure necessary to inject this network information into the routing information 
provided to upstream networks. A routing protocol should be running on the head-end routers to use 
RRI.

Static Route Redistribution

The redistribution of the static routes inserted by RRI takes place via the normal route redistribution 
mechanisms already present in Cisco IOS Software. In the example, the default metric applied is the 
typical default used for an Ethernet interface.

Head-end router #1:

router eigrp 1
 redistribute static metric 1000 100 255 1 1500
 network 10.0.0.0
 default-metric 10000 100 255 1 1500
 no auto-summary
!

Head-end router #2:
router eigrp 1
 redistribute static metric 1000 100 255 1 1500
 network 10.0.0.0
 default-metric 10000 100 255 1 1500
 no auto-summary
!

RRI is not configured on the branch devices. The branch routers use a static default pointing to the 
upstream next hop.
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Site-to-Site VPN Case Study

This case study provides a reference example for a site-to-site VPN design, describing how these design 
principles can be applied in a real-world scenario.

This case study assumes that all of the design considerations in Chapter 2, “Selecting a Site-to-Site VPN 
Solution,” and Chapter 3, “Selecting Solution Components,” have been addressed, and that best practice 
design recommendations are adopted by the customer.

The case study also assumes that the Cisco IOS Software levels listed in Software Releases Evaluated, 
page 3-18 are acceptable to the customer.

The details of the service provider backbone and WAN connectivity are not addressed in this case study, 
because the focus is on VPN deployment on the enterprise customer side.

This chapter includes the following topics:

• Customer Overview, page 5-1

• Design Considerations, page 5-3

• Network Layout, page 5-5

• Future Migration for Teleworkers, page 5-6

Customer Overview
Moose Widgets has been developing products at its Portland, Oregon headquarters (HQ) for several 
years. In addition, Moose has a single distribution center and 20 retail outlets across the United States 
(US).

Currently, Moose Widgets uses a traditional Frame Relay (FR) WAN service to connect its HQ to its 
distribution center. There is currently no connectivity to retail outlets, with the exception of a few outlets 
that use a personal computer (PC) to dial up to the corporate HQ. The current network topology is shown 
in Figure 5-1.
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Figure 5-1 Moose Widgets Case Study—Current Topology

Moose has recently acquired two companies; one in San Jose, California and the other in Great Falls, 
Montana. Moose wants to connect its newly acquired companies and its retail outlets to its corporate 
network as an intranet. In addition, Moose plans to expand its retail outlets to 40–50 outlets over the next 
year, and sees already that it will most likely need additional distribution centers on the east and west 
coasts of the US.

As part of a corporate initiative, Moose is implementing a centralized inventory tracking system to 
significantly lower costs and to better manage inventory in its growing distribution centers and retail 
outlets. The existing dial-in access does not provide adequate bandwidth to support the new applications. 
Also, Moose is concerned about escalating dial-in charges as each retail outlet relies more on corporate 
resources. As a result, Moose is looking to transition to a dedicated connection for each of its retail 
outlets using the Internet and VPN technology.

Moose is concerned about the costs of adding the connections, and about the ability to quickly get retail 
outlets up and running. Moose indicates that it is primarily concerned about data traffic today, but there 
is some degree of interest in adding voice services in the future.

Moose estimates its traffic requirements for its different site locations as shown in Table 5-1.

Moose has approached Cisco to see how a VPN might solve its problems.

Moose Widgets
headquarters
Portland, OR

12
61

72

Frame Relay
Retail outlets

(20)

Corporate
Network PSTN

Distribution center
Seattle, WA

Dialup

Table 5-1 Moose Widgets Case Study—Traffic Profile

Location Estimated Traffic

Distribution Center (1 today, potentially 3 in the 
future)

1 Mbps

San Jose 4 Mbps

Great Falls 4 Mbps

Retail Outlets (up to 50) 50 kbps—typical (40); 200 kbps—larger (10)

TOTAL 15 Mbps
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Design Considerations
A site-to-site IPSec VPN will be deployed, with the Moose corporate HQ serving as the head end and 
all other locations treated as branch sites. This will allow a branch office to subscribe to a local ISP, get 
authenticated, and be inside the corporate intranet. 

At the same time, end-to-end encryption is attained using IPSec tunneling. Switching to VPN offers 
Moose significant cost savings over dial-up solutions and the ability to outsource to a service provider 
who has VPN service as a core competency, providing more efficiency with cost and scalability.

Following the design practice outlined in Chapter 2, “Selecting a Site-to-Site VPN Solution” and 
Chapter 3, “Selecting Solution Components,” there are four main design steps to perform, as described 
in the following sections:

• Preliminary Design Considerations, page 5-3

• Sizing the Head End, page 5-4

• Sizing the Branch Sites, page 5-4

• Tunnel Aggregation and Load Distribution, page 5-5

Preliminary Design Considerations
The design is straightforward and offers flexibility. As new retail locations are put into service, Moose 
can purchase Internet connectivity from the local ISP, deploy a Cisco VPN router at the branch site, 
configure the IPSec tunnels to the head-end devices at the corporate headquarters, and be up and running 
in a short amount of time.

Using the questions from Types of Site-to-Site VPN Deployments, page 2-1, Table 5-2 summarizes the 
preliminary design considerations.

Table 5-2 Preliminary Design Considerations

Question Answer Comments

What applications does the 
customer expect to run over the 
VPN?

Data Interested in future voice services

Is multi-protocol support required? Yes, IP and multicast GRE tunnels will enable multi-protocol 
traffic transport.

How much packet fragmentation 
does the customer expect on its 
network?

Minimal Path MTU discovery enabled

How many branches does the 
customer expect to aggregate to the 
head end?

55 sites

What is the customer expected 
traffic throughput to/from branch 
offices?

See Table 5-1

What are the customer 
expectations for resiliency?

Resiliency is required 1 primary, 1 backup tunnel

What encryption level is required? 3DES
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EIGRP is recommended as the routing protocol, with route summarization.

Sizing the Head End
Although the traffic loads involved do not exceed the recommended capacity of a single head-end 
device, Moose would like built-in redundancy at the central location. The tunnels from the remote ends 
will be allocated to each of the head-end devices to balance the traffic load. Secondary tunnels will also 
be configured and allocated so that, in the event of a head end failure, traffic is transitioned to the partner 
head-end device.

Applying the sizing algorithm defined in Head End Devices, page 3-5, the calculation of head end sizing 
based on number of GRE tunnels is as follows:

N = 55

T = N x 2 = 110

C(t) = (T / 500) rounded up + 1 = 110/500 rounded +1 = 1 + 1 = 2 head ends

Next, applying the sizing algorithm defined in Head End Devices, page 3-5 and using the throughput 
estimates from Table 5-1, the calculation of head end sizing based on branch traffic throughput is as 
follows:

A =  (3*(1 Mbps)+4 Mbps+4 Mbps+40*(50kbps)+10*(200kbps)) = 15 Mbps

H = 66 Mbps (for Cisco 7206VXR NPE-G1 in Solution One design)

C(a) = A/H, rounded up + 1 = 15/66 rounded up + 1 = 1+1 = 2 head ends 

Comparing the number of head-end devices calculated based on number of tunnels, C(t), to the number 
based on aggregate throughput, C(a), the outcomes match. Therefore, it is appropriate to deploy two 
head-end devices.

Presented with the head end product options, the customer selects to deploy two Cisco 7206 VXR 
NPE-G1s, each equipped with an SA-VAM2 hardware encryption adapter.

Sizing the Branch Sites
The primary consideration for sizing of branch office sites is expected traffic throughput. Accordingly, 
starting with Table 5-1, and applying the concepts presented in Branch Site Devices, page 3-11, the 
branch products selected are summarized in Table 5-3.

What type of IKE authentication 
method will be used?

The use of pre-shared 
keys is selected because 
of relatively small 
number of sites to 
manage.

Migration to digital certificates should 
be considered if number of branches 
increases beyond 50 in the future.

What other services will be run on 
the branch VPN routers?

None

Table 5-2 Preliminary Design Considerations (continued)

Question Answer Comments
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At each of the acquired company locations, a Cisco 3745 VPN Router is deployed with high performance 
hardware-accelerated encryption (AIM-HP). The choice of the 3745 platform is based on the assumption 
that the acquired companies are large offices with a substantial number of employees. 

At each of the distribution centers, a Cisco 2691 Series VPN Router is deployed with enhanced 
performance hardware-accelerated encryption (AIM-EPII). 

Finally, at each of the retail locations, the Cisco 2651 XM is recommended for the larger retail outlets, 
and the Cisco 1760 for the smaller retail outlets.

Tunnel Aggregation and Load Distribution
Given 55 branch sites, the total number of tunnels that need to be aggregated is 110 (primary and 
secondary). Therefore, the first head-end device is allocated 27 primary and 28 backup tunnels, and the 
second head-end device is allocated 28 primary and 27 backup tunnels.

Network Layout
The new network topology is shown in Figure 5-2.

Table 5-3 Moose Widgets Case Study—Branch Site Devices

Location Estimated Throughput Branch Office Platform Selected

Distribution centers 1 Mbps Cisco 2691

San Jose 4 Mbps Cisco 3745

Great Falls 4 Mbps Cisco 3745

Retail outlets (typical) 50 kbps Cisco 1760

Retail outlets (larger) 200 kbps Cisco 2651XM
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Figure 5-2 Moose Widgets Case Study—VPN Topology

Future Migration for Teleworkers
At some point in the future, Moose Widgets may also start offering telecommuting options for its 
employees at the two acquisition locations (necessary in San Jose because of the extremely congested 
traffic conditions, and necessary in Montana because of excessive snowfalls). 

For more information on VPN expansion, see the Business Ready Teleworker SRND at the following 
URL: 
http://www.cisco.com/application/pdf/en/us/guest/netsol/ns241/c649/ccmigration_09186a00801ea79d.
pdf

Corporate
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Test Bed Configuration

This section includes the following topics:

• Scalability Test Bed Network Diagram, page A-1

• Scalability Test Bed Configuration Files, page A-3

Scalability Test Bed Network Diagram
Figure A-1 shows the test bed topology used in the scalability testing.
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Figure A-1 Test Bed Topology
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vpn6-2600-30

vpn7-2948G-1

vpn8-2948G-1

vpn9-2948G-1

vpn7-2600-1
through

vpn7-2600-30

vpn8-2600-1
through

vpn8-2600-30

vpn9-2600-1
through

vpn9-2600-30
Si

vpn10-2600-1
through

vpn10-2600-30

Chariot
Endpoints

"Branch endpoints"
Sun Netras: vpn5-n1 through

vpn5-n30

vpn2-6500-2

vpn11-2948G-1

vpn12-2948G-1

ci13-2948G-1

vpn11-2600-1
through

vpn11-2600-30

vpn12-2600-1
through

vpn12-2600-30

vpn13-800 - 1-5
vpn13-1700-1-5
vpn13-2600-1-5
vpn13-3640-1-5

vpn14-2948G-1

vpn14-3620-1-5
vpn14-3660-1-5
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Scalability Test Bed Configuration Files
The configurations for the central and branch sites are listed below in the following sections. It should 
be noted that these configurations have been extracted from real configurations used in scalability 
testing. They are provided as a reference only.

This section includes the following topics:

• Solution One—IPSec with GRE, page A-3

• Solution Two—DMVPN, page A-6

• Solution Three—IPSec with DPD, RRI and HSRP, page A-9

Solution One—IPSec with GRE

The following configurations are excerpts of the devices under test in the Solution One testing. The use 
of GRE as a tunneling method requires static tunnel endpoint configuration.

Head End Configuration

There are two head-end devices in the test bed, each terminating a GRE tunnel from all branch site 
routers. The configuration shown below is an excerpt of the first head end and does not contain 
configuration commands for all branches. The ISAKMP pre-shared key, the IPSec peer, the tunnel 
interface, and the crypto access list are shown for one device.

Head-end router #1:

ip cef
!
crypto isakmp policy 1
 encr 3des
 authentication pre-share
 group 2
crypto isakmp key bigsecret address 192.168.0.2
!
crypto ipsec transform-set vpn-test esp-3des esp-sha-hmac 
!
crypto map static-map local-address GigabitEthernet0/1
crypto map static-map 100 ipsec-isakmp   
 set peer 192.168.0.2
 set transform-set vpn-test 
 match address b000
!
interface Loopback0
 description Loopback0
 ip address 10.57.1.255 255.255.255.255
!
interface Tunnel0
 description vpn5-2600-1-000
 ip address 10.60.0.193 255.255.255.252
 ip summary-address eigrp 1 10.0.0.0 255.0.0.0 5
 tunnel source 192.168.251.1
 tunnel destination 192.168.0.2
 crypto map static-map
! 
interface GigabitEthernet0/1
 description GigabitEthernet0/1
 ip address 192.168.251.1 255.255.255.248
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 duplex auto
 speed auto
 media-type gbic
 negotiation auto
 crypto map static-map
!
interface GigabitEthernet0/2
 description GigabitEthernet0/2
 ip address 10.57.1.1 255.255.255.248
 duplex auto
 speed auto
media-type gbic
 negotiation auto
!
router eigrp 1
 network 10.0.0.0
 no auto-summary
!
ip route 0.0.0.0 0.0.0.0 192.168.251.2
!
ip access-list extended b000
 permit gre host 192.168.251.1 host 192.168.0.2
!

Branch Site Configuration

The following shows relevant configurations for one branch-site router. For resiliency, two tunnels are 
configured (primary and secondary), one to each head end. The EIGRP delay metric is used to make 
Tunnel0 the preferred path. This configuration shows QoS for VoIP flows (shaping and queuing) applied 
to the physical (outside) interface, the recommended use of summary routes, and an EIGRP stub 
configuration.

Branch-site router #1:

ip cef
!
class-map match-all call-setup
  match ip precedence 3 
class-map match-all mission-critical
  match ip precedence 2 
class-map match-all voice
  match ip precedence 5 
class-map match-any internetworkcontrol
  match ip precedence 6 
  match access-group 101
!
policy-map 192kb
  class call-setup
   bandwidth percent 5
  class internetworkcontrol
   bandwidth percent 5
  class mission-critical
   bandwidth percent 22
   queue-limit 16
  class voice
    priority 56
  class class-default
   fair-queue
   queue-limit 6
policy-map 192kb-shaper
  class class-default
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   shape average 182400 1824 0
   service-policy 192kb
!
crypto isakmp policy 1
 encr 3des
 authentication pre-share
 group 2
crypto isakmp key bigsecret address 192.168.251.1
crypto isakmp key bigsecret address 192.168.252.1
!
crypto ipsec transform-set vpn-test esp-3des esp-sha-hmac 
!
crypto map static-map local-address Serial0/0
crypto map static-map 10 ipsec-isakmp 
 set peer 192.168.251.1
set transform-set vpn-test 
 match address b000
 qos pre-classify
crypto map static-map 20 ipsec-isakmp  set peer 192.168.252.1 set transform-set vpn-test 
 match address b001
 qos pre-classify
!
interface Loopback0
 description Loopback0
 ip address 10.61.138.254 255.255.255.255
!
interface Tunnel0
 description Tunnel0
 ip address 10.61.138.194 255.255.255.252
 ip summary-address eigrp 1 10.61.138.0 255.255.255.0 5
 qos pre-classify
 tunnel source 192.168.0.2
 tunnel destination 192.168.251.1
!
interface Tunnel1
 description Tunnel1
 ip address 10.61.138.198 255.255.255.252
 ip summary-address eigrp 1 10.61.138.0 255.255.255.0 5
 delay 60000
 qos pre-classify
 tunnel source 192.168.0.2
 tunnel destination 192.168.252.1
!
interface Serial0/0
 description Serial0/0 
 bandwidth 192
 ip address 192.168.0.2 255.255.255.252
 service-policy output 192kb-shaper
 crypto map static-map
!
interface FastEthernet0/1
 description FastEthernet0/1
 ip address 10.61.138.129 255.255.255.192 secondary
 ip address 10.61.138.1 255.255.255.128
 speed 100
 full-duplex
!
router eigrp 1
 network 10.0.0.0
 no auto-summary
 eigrp stub connected summary
!
ip route 0.0.0.0 0.0.0.0 192.168.90.5!
ip access-list extended b000
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 permit gre host 192.168.0.2 host 192.168.251.1
ip access-list extended b001
 permit gre host 192.168.0.2 host 192.168.252.1
!
access-list 101 permit udp any eq isakmp any eq isakmp
!

Solution Two—DMVPN
The following configurations are excerpts of the devices under test in the Solution Two testing. 

Head End Configuration

There are two head-end devices in the test bed, each configured with one mGRE tunnel. A dual hub-dual 
DMVPN design is assumed. The configuration shown below is an excerpt of the first head end and does 
not show the entire configuration. Pre-shared keys with a wildcard address are used at the head end for 
simplicity of the ISAKMP authentication, although this is not recommended for customer use.

Head-end router #1:

ip cef
!
crypto isakmp policy 1
 encr 3des
 authentication pre-share
 group 2
crypto isakmp key bigsecret address 0.0.0.0 0.0.0.0
!
crypto ipsec transform-set vpn-test esp-3des esp-sha-hmac 
mode transport

no crypto ipsec nat-transparency udp-encaps
!
crypto ipsec profile vpn-dmvpn
 set transform-set vpn-test 
!
interface Loopback0
 description Loopback0
 ip address 10.57.1.255 255.255.255.255
!
interface Tunnel0
 description Tunnel0
 bandwidth 1000000
 ip address 10.56.0.1 255.255.252.0
 no ip redirects
 ip hold-time eigrp 1 35
 ip nhrp authentication test
 ip nhrp map multicast dynamic
 ip nhrp network-id 105600
 ip nhrp holdtime 600
 no ip split-horizon eigrp 1
 ip summary-address eigrp 1 10.0.0.0 255.0.0.0 5
 tunnel source GigabitEthernet0/1
 tunnel mode gre multipoint
 tunnel key 105600
 tunnel protection ipsec profile vpn-dmvpn
! 
interface GigabitEthernet0/1
 description GigabitEthernet0/1
 ip address 192.168.251.1 255.255.255.248
 duplex auto
 speed auto
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 media-type gbic
 negotiation auto
!
interface GigabitEthernet0/2
 description GigabitEthernet0/2
 ip address 10.57.1.1 255.255.255.248
 duplex auto
 speed auto
 media-type gbic
 negotiation auto
!
router eigrp 1
 network 10.0.0.0
 no auto-summary
!
ip route 192.168.0.0 255.255.0.0 192.168.251.2
!

Branch Site Configuration

The following shows relevant configurations for one branch-site router. A dual hub-dual DMVPN 
design is employed by using two tunnels, one to each head end. The EIGRP delay metric is used to make 
Tunnel0 the preferred path. This configuration shows QoS for VoIP flows (shaping and queuing) applied 
to the physical (outside) interface, the recommended use of summary routes, and an EIGRP stub 
configuration.

Branch-site router #1:

ip cef
!
crypto isakmp policy 1
 encr 3des
 authentication pre-share
 group 2
crypto isakmp key bigsecret address 192.168.251.1
crypto isakmp key bigsecret address 192.168.252.1
!
crypto ipsec transform-set vpn-test esp-3des esp-sha-hmac 
mode transport

no crypto ipsec nat-transparency udp-encaps
!
crypto ipsec profile vpn-dmvpn
 set transform-set vpn-test 
!
class-map match-all VOICE
  match ip dscp ef 
 class-map match-any CALL-SETUP
  match ip dscp af31 
  match ip dscp cs3 
 class-map match-any INTERNETWORK-CONTROL
  match ip dscp cs6 
  match access-group name IKE
 class-map match-all TRANSACTIONAL-DATA
  match ip dscp af21 
!
 policy-map 192kb
  class CALL-SETUP
   bandwidth percent 2
  class INTERNETWORK-CONTROL
   bandwidth percent 5
  class TRANSACTIONAL-DATA
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   bandwidth percent 22
   queue-limit 16
  class VOICE
   priority 64
  class class-default
   fair-queue
   queue-limit 6
 policy-map 192kb-shaper
  class class-default
   shape average 182400 1824 0
service-policy 192kb
!
interface Loopback0
 description Loopback0
 ip address 10.61.138.254 255.255.255.255
!
interface Tunnel0
 description Tunnel0
 bandwidth 192
 ip address 10.56.3.10 255.255.252.0
 ip hold-time eigrp 1 35
 ip nhrp authentication test
 ip nhrp map 10.56.0.1 192.168.251.1
 ip nhrp map multicast 192.168.251.1
 ip nhrp network-id 105600
 ip nhrp holdtime 300
 ip nhrp nhs 10.56.0.1
 ip summary-address eigrp 1 10.61.148.0 255.255.255.0 5
 qos pre-classify
 tunnel source 192.168.100.6
 tunnel destination 192.168.251.1
 tunnel key 105600
 tunnel protection ipsec profile vpn-dmvpn
!
interface Tunnel1
 description Tunnel1
 bandwidth 192
 ip address 10.56.7.10 255.255.252.0
 ip hold-time eigrp 1 35
 ip nhrp authentication test
 ip nhrp map 10.56.4.1 192.168.252.1
 ip nhrp map multicast 192.168.252.1
 ip nhrp network-id 105640
 ip nhrp holdtime 300
 ip nhrp nhs 10.56.4.1
 ip summary-address eigrp 1 10.61.148.0 255.255.255.0 5
 delay 60000
 qos pre-classify
 tunnel source 192.168.100.6
 tunnel destination 192.168.252.1
 tunnel key 105640
 tunnel protection ipsec profile vpn-dmvpn
!
interface Serial0/0
 description Serial0/0 
 bandwidth 192
 ip address 192.168.100.6 255.255.255.252
 service-policy output 192kb-shaper
!
interface FastEthernet0/1
 description FastEthernet0/1
 ip address 10.61.148.129 255.255.255.192 secondary
 ip address 10.61.148.1 255.255.255.128
 speed 100
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 full-duplex
!
router eigrp 1
 network 10.0.0.0
 no auto-summary
 eigrp stub connected summary
!
ip route 0.0.0.0 0.0.0.0 192.168.100.5!
ip access-list extended IKE
 permit udp any any eq isakmp
!

Solution Three—IPSec with DPD, RRI and HSRP
The following configurations are excerpts of the devices under test in the Solution Three testing. 

Head End Configuration

There are two head-end devices in the test bed, configured for dynamic crypto maps, DPD, RRI, and 
HSRP. The first head-end device is shown. No crypto peer statement or crypto access list is required. 
The ISAKMP pre-shared key is shown for one branch router.

Head-end router #1:

ip cef
!
crypto isakmp policy 1
 encr 3des
 authentication pre-share
 group 2
crypto isakmp key bigsecret address 192.168.0.2
!
crypto isakmp keepalive 10
!
crypto ipsec transform-set vpn-test esp-3des esp-sha-hmac 
!
crypto dynamic-map dmap 10
 set transform-set vpn-test 
 reverse-route
!
crypto map dynamic-map local-address GigabitEthernet0/1
crypto map dynamic-map 10 ipsec-isakmp dynamic dmap 
!
interface GigabitEthernet0/1
 description GigabitEthernet0/1
 ip address 192.168.251.5 255.255.255.248
 duplex auto
 speed auto
 media-type gbic
 negotiation auto
 standby ip 192.168.251.1
 standby timers msec 50 1
 standby priority 101
 standby preempt
 standby name outside
 standby track GigabitEthernet0/2
 crypto map dynamic-map redundancy outside
!
interface GigabitEthernet0/2
 description GigabitEthernet0/2
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 ip address 10.57.1.1 255.255.255.248
 duplex auto
 speed auto
 media-type gbic
 negotiation auto
!
router eigrp 1
 redistribute static metric 1000 100 255 1 1500
 network 10.0.0.0
 default-metric 10000 100 255 1 1500
 no auto-summary
!
ip route 0.0.0.0 0.0.0.0 192.168.251.2
!

Branch Site Configuration

The following shows relevant configurations for one branch-site router. The crypto peer is the HSRP 
address at the head end. This configuration shows QoS for VoIP flows (shaping and queuing) applied to 
the physical (outside) interface.

Branch-site router #1:

ip cef
!
class-map match-all VOICE
  match ip dscp ef 
class-map match-any CALL-SETUP
  match ip dscp af31 
  match ip dscp cs3 
class-map match-any INTERNETWORK-CONTROL
  match ip dscp cs6 
  match access-group name IKE
class-map match-all TRANSACTIONAL-DATA
  match ip dscp af21 
!
policy-map 192kb
  class CALL-SETUP
   bandwidth percent 2
  class INTERNETWORK-CONTROL
   bandwidth percent 5
  class TRANSACTIONAL-DATA
   bandwidth percent 22
   queue-limit 16
  class VOICE
    priority 56
  class class-default
   fair-queue
   queue-limit 6
policy-map 192kb-shaper
  class class-default
   shape average 182400 1824 0
   service-policy 192kb
!
crypto isakmp policy 1
 encr 3des
 authentication pre-share
 group 2
crypto isakmp key bigsecret address 192.168.251.1
crypto isakmp keepalive 10
!
crypto ipsec transform-set vpn-test esp-3des esp-sha-hmac 
!

A-10
Data-only Site-to-Site IPSec VPN Design Guide

OL-7281-01



 

Appendix A      Test Bed Configuration
  Scalability Test Bed Configuration Files
crypto map static-map local-address Serial0/0
crypto map static-map 10 ipsec-isakmp 
set peer 192.168.251.1
 set transform-set vpn-test 
 match address b000
!
interface Loopback0
 description Loopback0
 ip address 10.61.138.254 255.255.255.255
! 
interface Serial0/0
 description Serial0/0 
 bandwidth 192
 ip address 192.168.90.6 255.255.255.252
 service-policy output 192kb-shaper
 crypto map static-map
!
interface FastEthernet0/1
 description FastEthernet0/1
 ip address 10.61.138.129 255.255.255.192 secondary
 ip address 10.61.138.1 255.255.255.128
 speed 100
 full-duplex
!
ip route 0.0.0.0 0.0.0.0 192.168.90.5
!
ip access-list extended IKE
 permit udp any eq isakmp any eq isakmp
ip access-list extended b000
 permit ip 10.61.138.0 0.0.0.255 10.0.0.0 0.255.255.255
A-11
Data-only Site-to-Site IPSec VPN Design Guide

OL-7281-01



 

Appendix A      Test Bed Configuration
  Scalability Test Bed Configuration Files
A-12
Data-only Site-to-Site IPSec VPN Design Guide

OL-7281-01



 

Data-on
OL-7281-01
A P P E N D I X B

References and Reading

This section includes the following topics:

• Documents, page B-1

• Request For Comment (RFC) Papers, page B-1

• Websites, page B-2

Documents
• SAFE: VPN IPSec Virtual Private Networks in Depth— 

http://www.cisco.com/en/US/netsol/ns340/ns394/ns171/ns128/networking_solutions_white_paper
09186a00801dca2d.shtml

• Business Ready Teleworker SRND— 
http://www.cisco.com/application/pdf/en/us/guest/netsol/ns241/c649/ccmigration_09186a00801ea
79d.pdf

Request For Comment (RFC) Papers
• RFC 2401—Security Architecture for the Internet Protocol

• RFC 2402—IP Authentication Header

• RFC 2403—The Use of HMAC-MD5-96 within ESP and AH

• RFC 2404—The Use of HMAC-SHA-1-96 within ESP and AH

• RFC 2405—The ESP DES-CBC Cipher Algorithm With Explicit IV

• RFC 2406—IP Encapsulating Security Payload (ESP)

• RFC 2407—The Internet IP Security Domain of Interpretation for ISAKMP

• RFC 2408—Internet and Key Management Protocol (ISAKMP)

• RFC 2409—The Internet Key Exchange (IKE)

• RFC 2410—The NULL Encryption Algorithm and Its Use With IPsec

• RFC 2411—IP Security Document Roadmap

• RFC 2412—The OAKLEY Key Determination Protocol
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Websites
• Enterprise VPNs—http://www.cisco.com/go/evpn

• Cisco SAFE Blueprint—http://www.cisco.com/go/safe

• Cisco Network Security—http://www.cisco.com/go/security

• Cisco AVVID Partner Program—http://www.cisco.com/go/securityassociates

• Cisco VPN Product Documentation—http://www.cisco.com/univercd/cc/td/doc/product/vpn/

• Download VPN Software from CCO—http://www.cisco.com/kobayashi/sw-center/sw-vpn.shtml

• Improving Security on Cisco Routers—http://www.cisco.com/warp/public/707/21.html

• Essential IOS Features Every ISP Should Consider— 
http://www.cisco.com/warp/public/707/EssentialIOSfeatures_pdf.zip

• Increasing Security on IP Networks— 
http://www.cisco.com/en/US/partner/tech/tk648/tk361/technologies_tech_note09186a0080120f48.
shtml

• Cisco TAC Security Technical Tips— 
http://www.cisco.com/cgi-bin/Support/browse/index.pl?i=Technologies&f=774

• IPSec Support Page— 
http://www.cisco.com/cgi-bin/Support/PSP/psp_view.pl?p=Internetworking:IPSec

• Networking Professionals Connection—http://forums.cisco.com
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Acronyms and Definitions

This section contains acronyms and their definitions.

• 3DES—Triple Data Encryption Standard

• ACL—Access control list

• AES—Advanced Encryption Standard

• AH—Authentication Header

• AIM—Advanced Integration Module

• ATM—Asynchronous Transfer Mode

• AVVID—Architecture for Voice, Video, and Integrated Data

• CA—Certificate Authority

• CAC—Call Admission Control

• CANI—Cisco AVVID Network Infrastructure

• CAR—Committed Access Rate

• CBWFQ—Class Based Weighted Fair Queuing

• CEF—Cisco Express Forwarding

• CPE—Customer Premises Equipment

• cRTP—Compressed Real-Time Protocol

• DES—Data Encryption Standard

• DHCP—Dynamic Host Configuration Protocol

• DLSw—Data Link Switching

• DMVPN—Dynamic Multipoint Virtual Private Network

• DMZ—De-Militarized Zone

• DNS—Domain Name Service

• DPD—Dead Peer Detection

• DSL—Digital Subscriber Line

• EIGRP—Enhanced Interior Gateway Routing Protocol

• ESP—Encapsulating Security Protocol

• FIFO—First In First Out

• FQDN—Fully Qualified Domain Name
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• FR—Frame Relay

• FRTS—Frame Relay Traffic Shaping

• FTP—File Transfer Protocol

• GRE—Generic Route Encapsulation

• HSRP—Hot Standby Router Protocol

• ICMP—Internet Control Message Protocol

• IKE—Internet Key Exchange

• IOS—Internetwork Operating System

• IP—Internet Protocol

• IPMc—IP Multicast

• IPSec—IP Security

• IP GRE—See GRE

• ISA—Integrated Service Adapter

• ISM—Integrated Service Module

• ISP—Internet Service Provider

• Layer 2—OSI reference model Link Layer

• Layer 3—OSI reference model Network Layer

• Layer 4—OSI reference model Transport Layer

• LFI—Link Fragmentation and Interleaving

• LLQ—Low Latency Queuing

• L2TP—Layer 2 Tunneling Protocol

• MDRR—Modified Deficit Round Robin

• mGRE—Multipoint Generic Route Encapsulation

• MLPPP—Multi-link Point-to-point Protocol

• MPLS—Multi-Protocol Label Switching

• MTU—Maximum Transmission Unit

• NAT—Network Address Translation

• NetFlow—Cisco IOS component, collects and exports traffic statistics

• NHRP—Next Hop Resolution Protocol

• NHS—Next-Hop Server

• NTP—Network Time Protocol

• ODR—On-Demand Routing

• OSPF—Open Shortest Path First

• PAT—Port Address Translation

• PBR—Policy Based Routing

• PE—Premises Equipment

• PPTP—Point-to-Point Tunneling Protocol

• PVC—Permanent Virtual Circuit
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• QoS—Quality of service

• RADIUS—Remote Authentication Dial In User System

• RTP—Real-Time Protocol

• SA—Security Association

• SAA—Service Assurance Agent

• SHA-1—Secure Hash Algorithm One

• SLA—Service Level Agreement

• SNMP—Simple Network Management Protocol

• SOHO—Small Office / Home Office

• SRST—Survivable Remote Site Telephony

• TCP—Transmission Control Protocol

• TED—Tunnel Endpoint Discovery

• ToS—Type of service

• UDP—User Datagram Protocol

• VAD—Voice Activity Detection

• VoIP—Voice over IP

• V3PN—Voice and Video Enabled IPSec VPN

• VAM—VPN Acceleration Module

• VPN—Virtual Private Network

• WAN—Wide Area Network

• WRED—Weighted Random Early Detection
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